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This document c o n s t i t u t e s   t h e  final r e p o r t   f o r  NASA Contract  NAS5-10443 

and   supersedes   the  interim reports  ~2-125680-1  and -2. Included is a descrip- 

t ion   o f   research   conducted   dur ing   the   per iod  of June 23., 1967 t o   J a n u a r y  31, 
1969. Work on  the  program was directed  toward  accomplishing  the main ob jec t ive  

which is the   es tab l i shment   o f   cor re la t ion   and   equiva lence   fac tors   o f   rad ia t ion  

induced   nonl inear   degrada t ion   of   t rans is tor   cur ren t   ga in .   Research   progressed  

i n  accordance  with a modified  program  plan  primarily as o u t l i n e d  i n  the  Boeing 

t echn ica l   p roposa l  document D2-125398-1, "Radiation  Induced  Nonlinear  Degrada- 

t ion   o f   Trans is tor   Gain ,"   Apr i l  1967 (Ref. 1). 

The r e s e a r c h   d e s c r i b e d   i n   t h i s   r e p o r t ,  Phase 11, dea ls   p r imar i ly   wi th  

i o n i z a t i o n   i n d u c e d   s u r f a c e   e f f e c t s   o n   t r a n s i s t o r s .   I n   a d d i t i o n   t h e r e  is in-  

c l u d e d   i n   t h i s  work the  extension  of   data  on equivalences for displacement 

damage i n i t i a t e d   i n  Phase I of t h i s  program  under c o n t r a c t  NAS5-9578 and  the 

es tab l i shment   o f   the   feas ib i l i ty  of conducting  simultaneously combined radia- 

t i o n   e f f e c t s  tests proposed  for   future   Phase I11 work. 

A one MeV e lec t ron   exposure  t e s t  o f   t r a n s i s t o r s  was used t o   e m p i r i c a l l y  

formulate  aspects  of  the  dependence  of  nonlinear damage on r a d i a t i o n  and t o  de- 

termine  the  inf luence of   cont inuous  e lectr ical   operat ion  during  exposure  on  the 

magnitude  of  device damage. Cobalt 60 - gamma radiat ion  exposure of devices 

from the  Phase I c o n t r a c t  was extended  to  high  doses  to  provide  improved  data 

on gamma radiat ion  displacement   equivalences.   Separate   e lectron tes ts  and 

15 MeV proton tes ts  were conducted  to  determine  the  best  t e s t  plan  approach 

f o r  combined s y n e r g i s t i c  tests. P r o t o n   t e s t i n g  a t  15 MeV was extended  to   high 

f luences   t o   fu r the r   s tudy   t he   impor t ance   o f   i on iza t ion   e f f ec t s   and   t o  improve 

displacement  equivalence  values  obtained  under  the  Phase I con t r ac t .  

The  dependence  of  passive  but  not  active  transistors on c o l l e c t o r   c u r r e n t  

during measurement of   cur ren t   ga in  was found to be cons i s t en t   w i th   t ha t  

t h e o r e t i c a l l y   p r e d i c t a b l e  from increased   car r ie r   recombina t ion  rates a t  the 

surface.of   the  base-emit ter   junct ion  region.  A s t a t i s t i c a l   s t u d y   o f   p a s s i v e  

t r a n s i s t o r s   r e v e a l e d   t h a t  effects  on  devices  within a ba tch   t end   t o  behave 

s imi la r ly ,   whi le   devices  from separa te   ba tches  are l i k e l y   t o  behave  dis- 

s i m i l a r l y  i f  the  batch numbers ( i .e . ,   the   date   codes)  are very   d i f fe ren t .  
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I n  addi t ion ,   devices  f r o m  d i f fe ren t   manufac turers  are l i k e l y   t o  be d i s s i m i h r  

due t o   d i f f e r e n c e s  i n  surface p repa ra t ion ,  geometry, e t c .  

The p r o f i l e   f o r   b u i l d u p  of damage with  dose,analyzed i n  the form o f  

A l / h  )does   no t   cons is ten t ly  f i t  any of the   an t i c ipa t ed   exponen t i a l  or simple 

power law re l a t ionsh ips .  Moreover, i f  some of   the  curves o f   a c t i v e  NPN devices  

are t o  be approximated by a power l a v  then  x > 1 values  should  be  used. 

Analysis  of data i n  the  desirable   t tnormalizedl t  form o f   r e l a t i v e   g a i n   l o s s  

o w h m i  was a l s o  performed.   Empir ical   f i t t ing of re la t ive ga in  l o s s  t o  a 

hyperbolic  tangent  formulation was s u c c e s s f u l   f o r   t h e   t r a n s i s t o r   t y p e s   s t u d i e d .  

In   gene ra l   t he   concep t   o f   i on iza t ion   equ iva lences   fo r   non l inea r  damage 

works q u i t e  well. The on ly   (bu t   ve ry   s ign i f i can t )   excep t ion  was the  much 

g r e a t e r  damage s e n s i t i v i t y   o f   p a s s i v e  npn t r a n s i s t o r s  that had  been  exposed t o  

the   i on iza t ion   e f f ec t s   o f  15 MeV protons. 

Various new ins igh t s   i n to   t he   sou rce   o f   non l inea r  damage were revealed  and 

are descr ibed  in   detai l .   Al though  increased  recombinat ion a t  t h e   s i l i c o n   o x i d e  

and   semiconductor   in te r face   appears   to   account   for  most  of  the damage, c e r t a i n  

e f f ec t s   obse rved   on   l eakage   cu r ren t ,   ga in ,   capac i t ance ,   and   Ib   ve r sus  VBE 

ana lys i s   i nd ica t e   t ha t   cha rge   bu i ldup   o f   t he   ox ide   l aye r   (pa r t i cu la r ly   fo r   ac t ive  

devices)  can  play a ve ry   s ign i f i can t   ro l e .  

S i g n i f i c a n t   d i f f e r e n c e s   i n   r a d i a t i o n   s e n s i t i v i t y   b e t w e e n   p a s s i v e   a n d   a c t i v e  

NPN devices were observed  and are d i s c u s s e d   i n   d e t a i l .   L a t i n  cube a n a l y s i s   o f  

the   da ta  from the   mul t i fac tor   exper imenta l   des ign  was e f f e c t i v e   i n  showing  no 

s ignif icant   interdependence  between  dose  and  e i ther   current  or vol tage   appl ied  

e i ther   dur ing   exposure  or a p p l i e d   f o r  measurement o f   ga in   a f t e r   exposure .  De- 

pendence  of  nonlinear  dabrage  on  dose,  current, or vol tage   separa te ly   a re   desdr ibed  

i n   t h e   t e x t .  

Data on  nonlinear damage t o   t r a n s i s t o r s  exposed to   pu l sed   e l ec t rons  from 

the   L inac   ( i n   t he  combined beam mode) agreed well wi th   s teady  s ta te  exposure 

from the  Dynamitron  indicating no s i g n i f i c a n t  rate e f f e c t s .  15 MeV proton 

nonl inear  damage ( i n   t h e  combined beam mode) t o  pnp t r a n s i s t o r s  showed  good 

agreement  with  electron  exposed  devices  based on total   absorbed  dose.   Proton 

e f f e c t s  on  npn t r a n s i s t o r s ,  however,  showed much g r e a t e r  damage than   e lec t ron  

e f f e c t s   f o r   t h e  same dose.  Thus  proton  exposures were ex tended   to   h igh   f luences  

to   de te rmine  when displacement  effects  dominate.  An anomalous s e n s i t i v i t y   t o  

ac t ive   b ias ing   dur ing   pro ton   exposure  was a lso   observed .  
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Resul t s   o f  separate Linac electron and  Dynamitron  proton  tes t ing  ( in  

t h e  combined beam mode) have,   however ,   es tabl ished  the  feasibi l i ty   of  

combined beam t e s t ing .  

It is recommended t h a t  a Phase I11 e f f o r t   t o  this program  be  planned. 

That  phase  should  include  simultaneously combined electron  and  proton  ex-  

posures. Due t o  more severe proton damage and somewhat opposing  resul ts   of  

e l e c t r o n   d a m p   ( r a t i o   o f   a c t i v e   b i a s   t o   p a s s i v e )   t o  npn devices ,  i t  is sug- 

gested that s i g n i f i c a n t   a d d i t i v e   s y n e r g i s t i c   e f f e c t s  will be observed. It is 

a l s o  recommended t h a t   t h e  la tes t  h i g h   r e l i a b i l i t y   d e v i c e   t y p e s   ( t y p i c a l   o f  

new space   sys tem  u t i l i za t ion)  be tes ted  a long  with  base l i n e  2N1613 
t r a n s i s t o r s .  A capt ive  assembly  l ine  could be u t i l i z e d   t o   a s s u r e   p r o c e s s i n g  

c o n t r o l  as well as i d e n t i f i c a t i o n   a n d   s e l e c t i o n   o f   v a r i o u s   s p e c i f i c   s u r f a c e  

p r o p e r t i e s .   I n   a d d i t i o n ,  due to   the  unpredicted  response  observed on the  

precursory   t es t ing   o f  npn t r ans i s to r s   ac t ive ly   ope ra t ed   du r ing   p ro ton  

exposure, i t  is proposed  that   s tudies   of   proton damage as a func t ion   of  . 

ac t ive   b ias   dur ing   exposure  be conducted t o  complement similar s t u d i e s  

a l ready   conducted   wi th   e lec t rons .  
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1 0 INTRODUCTION 

1.1 PURPOSE 

The overa l l   needs  that relate t o  space mis s ion   r ad ia t ion   vu lne rab i l i t y   o f  

e l e c t r o n i c   s y s t e m s   i n c l u d e   t h e   a b i l i t y   t o :  

1. Ext rapo la t e  f rom  laboratory-s imulated  radiat ion tests t o  space radia- 

t ion  performance; 

2. Ex t r apo la t e  from  performance on a n   i n - f l i g h t  test  t o   o t h e r   s p a c e  

mission  conditions;  

3 .  General ize  from r a d i a t i o n   e f f e c t s  on a l i m i t e d  number o f   t r a n s i s t o r s  

t o   t h e   e f f e c t s   o n  many types;   and 

4. Develop  techniques t o   a l l o w   f o r   s t a n d a r d i z a t i o n   i n   q u a l i f i c a t i o n  

t e s t i n g   o f  new devices.  

This   cont rac ted   s tudy   se rves  as the  second  phase  of a p l a n n e d   e f f o r t  

d i r e c t e d  toward  meet ing  those  needs  l is ted  above.   In   par t icular ,  i t  is the ob- 

j e c t i v e   o f   t h i s   c o n t r a c t   t o   e s t a b l i s h   c o r r e l a t i o n   a n d   e q u i v a l e n c e   f a c t o r s   f o r  

rad ia t ion   induced   nonl inear   degrada t ion   of   t rans is tor   cur ren t   ga in   ( ion iza t ion  

induced   su r f ace   e f f ec t s )   fo r   u se   i n   t he   eva lua t ion   o f   s emiconduc to r   dev ices   fo r  

spacecraf t   miss ions .  

1.2 PROGRAM  SCOPE AND DESCRIPTION 

Phase I of this program was completed  under NASA Contract NAS5-9578. 

The ob jec t ive  of Phase I research was the   es tab l i shment   o f   va l id   space   rad ia t ion  

equivalences  for  permanent  displacement damage t o   s i l i c o n   t r a n s i s t o r s .  The 

r e s u l t s   o f   t h a t  work ( s p e c i f i c a l l y   t h e   r e l a t i v e   e f f e c t i v e n e s s  of e l ec t rons   and  

p ro tons   o f   d i f f e ren t   ene rg ie s  as wel l  as Cobalt-60 gamma rays )  were r e p o r t e d   i n  

NASA r e p o r t  a-814, "Space Radia t ion   Equiva lences   for   Ef fec ts  on T r a n s i s t o r s  , I 1  

by R. R. Brown and W. E. Home,   July 1967. (Reference 2 ) .  

Phase I1 o f   t h i s  program w a s  conducted  under   this   contract  NAS5-10443, 

"Radiation-Induced  Nonlinear  Degradation  of  Transistor  Gain." The i n t e g r a t i o n  

of   effor ts   and  goals   of   Phase I and  Phase I1 are shown i n  Figure 1 as well as 

the  proposed  Phase I11 e f f o r t s .  

1 
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The  work i n  Phase I1 was d iv ided   i n to   t h ree  tasks. 

Task A -- Empir ical ly   formulate   the  dependence  of   nonl inear  damage on 

r a d i a t i o n ,  by: 

1. Establishing  the  dependence  of  nonlinear  gain  degradation  on  the 

emitter c u r r e n t  a t  which  the  gain is spec i f i ed .  

2. Determining  the s ta t i s t ica l  spread i n  the   increase  of non l inea r  

damage wi th   rad ia t ion   exposure   for :   (a )  one ba tch   type ;   (b)   d i f fe ren t   ba tch  

types;   and  (c)   devices  from manufacturers   with  different   processing  controls .  

3 .  Establ i sh ing   ion iza t ion   equiva lences   for   nonl inear  damage. 

4. Explor ing  the  source  of   nonl inear  damage by the use of VBE versus 

IB a n a l y s i s  and i n i t i a l   p a r a m e t e r   c o r r e l a t i o n .  

Task B -- Determine  the  influence  on  radiation  equivalence  for  operation 

of   devices   under   cont inuous  e lectr ical   b ias   during  exposure,   by:  

1. Using a mul t i fac tor   exper imenta l   des ign   to  irradiate t r a n s i s t o r s  

under  various  combinations  of: ( a )  par t ic le   exposure ;   (b)   opera t ing   cur ren t ,  

Ib ;  and ( c )   b i a s   v o l t a g e ,  . v;: 
2. Using a computer  program f o r  a s t a t i s t i c a l   a n a l y s i s   o f   t h e   f u n c t i o n a l  

dependence of gain  degradat ion  on  par t ic le   exposure,  I& and VI C' 
3 .  Modifying  ionization  equivalence  values due t o   e l e c t r i c a l   o p e r a t i n g  

condi t ions.  

4. Recommending ex tended   app l i ed   b i a s   t e s t ing   fo r   p ro ton   i on iza t ion  

e f f e c t s .  

Task c -- Es tab l i sh   t he   f eas ib i l i t y   o f   conduc t ing  combined e f f e c t s  tests 

to   de t e rmine   syne rg i s t i c s ,  by: 

1. In tegra t ing   the   L inac   and  Dynarnitron beam hand l ing   sys t ems   i n   o rde r   t o  

provide   capabi l i ty   for   s imul taneous ly  combined e lec t ron   and   pro ton   exposure   t es t ing .  

2. Conducting a s e p a r a t e   e l e c t r o n  tes t  on t r a n s i s t o r s   u s i n g   t h e   L i n a c   ( i n  a 

combined beam c o n f i g u r a t i o n )   t o   d e t e r m i n e   i f  similar damage is obtained as t h a t  

observed by s t e a d y   s t a t e  Dynarnitron t e s t i n g  used i n  Tasks A and C. 
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3. Conducting a sepa ra t e  15 MeV proton test to   ex tended   exposure   l eve ls  

( i n  a combined beam c o n f i g u r a t i o n )   t o  assess t h e   r e l a t i v e  role o f   s u r f a c e   e f f e c t s  

and  displacement damage. 

4. Recommending an   appropr i a t e   app roach   fo r  combined  exposure t e s t i n g  

based on r e su l t s   o f   Task  B.2. and B.3. 

1.3 SUMMARY OF WORK PERMRMED 

Major tasks of t h i s  program  were directed  toward  obtaining data important 

to   the   unders tanding  of i on iza t ion   i nduced   su r f ace   e f f ec t s   (p r imar i ly   ga in  

degradation - nonlinear .  damage)  on t r a n s i s t o r s .   E f f o r t s  were pr imar i ly   o r ien ted  

toward appl ica t ions   o f  data important   to   the  assessment   of   system  vulnerabi l i ty  

and  prerequis i te   to   design  hardening.  

Work was accomplished i n  accordance  with  the program descr ip t ion   of  

Sec t ion   1 .2 .   In   gene ra l   t h i s   i nc luded   p repa ra t ion   o f   t r ans i s to r s   fo r  test  by 

p rope r   s e l ec t ion ,   bu rn   i n   and   cu l l i ng ,   coup led   w i th   e l ec t r i ca l   cha rac t e r i za t ion .  

Beside  the  measurements  of 16 parameters (h a t  v a r i o u s   i n j e c t i o n   l e v e l s ,  

ICBO' 'sat* 
measurements (1   vs  . V BE, IEBO vs. VR,  ICm vs. VR, CBE, CBc.. . I  were a l s o  

performed  on s e l e c t e d   g r o u p s   o f   d e v i c e s   i n   o r d e r   t o   a i d   i n   t h e   i n t e r p r e t a t i o n  

of the  data .   Radiat ion  tes ts   performed on these  devices  include: 1) 1 MeV 

Dynamitron electrons,   2)  Cobalt-60 gamma rays ,  3) 2.9 MeV Linac  e lectrons,   and 

4) 15 MeV protons.  The behavior   of   selected  devices ,  2N1613 - N P N  and  2Nll32 - 
PNP, was monitored  during  exposure  under  both  passive  and  active  conditions.  

The r e s u l t s  of these tests were analyzed by computer,   wherever  feasible,   for 

each  task.  

IF301 
) on all dev ices ,   u s ing   an   au tomat i c   t r ans i s to r  tester, s p e c i a l  

B 

The separa t ion   of   nonl inear  damage for 10 d i f f e ren t   t ypes   o f   t r ans i s to r s  

exposed t o  0.5, 1.3, and 2.0 MeV e lec t rons   dur ing   the   phase  I con t r ac t  (NAS5- 
9578) w a s  completed.   Further  computer  analysis  of  that  data a t  IE = 2.8, 5 ,  
and 10 ma was used t o  show t h a t   t h e   r e l a t i v e   i n c r e a s e   i n   n o n l i n e a r  h degrada- 

t i o n   w i t h   d e c r e a s e   i n   t h e   l e v e l   o f   e m i t t e r   i n j e c t i o n   d u r i n g  measurement was 

similar f o r  wide ly   d i f fe ren t   t rans is tor   types .  

Extens ive   ana lys i s   o f   the   cur ren t   t es t  data from the   p resent   cont rac t  

(phase I1 of the  program) was used to  extend  the  study  of  the  dependence  of 

gain  degradat ion on the   co l l ec to r   cu r ren t  a t  which the   ga in  was measured.  This 
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dependence is given  both in '  mathematical  and i n  paramet r ic   representa t ion .  

Although gain degradat ion was most d r a s t i c  a t  the low cur ren t   va lues ,  it was 

s i g n i f i c a n t   e v e n  a t  h igh   cur ren ts .   P lo ts  $E, A s E ,  ohFF/h+ , l/h, and 

A ( l / h )  as a function  of I a t  d i f f e ren t   f l uence   l eve l s   and /o r  as a func t ion  i 
C 

of   f luence   for  a family of d i f f e r e n t  IC values  were s tudied .  The genera l  

v a l i d i t y   o f   t h e   t h e o r e t i c a l l y   p r e d i c t a b l e  dependence  of  degradation  on IC 
was v e r i f i e d   f o r   d i f f e r e n t   t y p e s   o f   r a d i a t i o n   ( f o r   t r a n s i s t o r s   e x p o s e d   o n l y  

pas s ive ly   t o   r ad ia t ion ) .   T rans i s to r   ope ra t ion   unde r   ac t ive   b i a s   du r ing  ex- 

posure  did  not conform to   t he   t heo re t i ca l ly   p red ic t ed   fo rmula t ion .  

Both NF'N and PNP t r a n s i s t o r s  were  procured from two manufacturers,  

Fairchild  and  Raytheon,  with  various  date  codes i n  o r d e r   t o   s t u d y   t h e  dif- 

f e r e n c e s   i n   i r r a d i a t i o n   r e s p o n s e  among the  devices   within a given  date  code, 

between d i f f e r e n t  date codes,  and  between  manufacturers. The r e s u l t s  of 

that s t u d y   i n d i c a t e d   f i r s t   t h a t   t h e   s p r e a d   i n  damage i n  terms  of   re la t ive 

gain loss o f   p a s s i v e   t r a n s i s t o r s  was not   great  among a l l  device  batches 

t e s t ed .  Even NPN and PNP t r a n s i s t o r s  showed gain  degradation  of  the same 

order.   Furthermore,   devices from  one date code  and  manufacturer  behaved 

similarly w h i l e   d i s s i m i l a r i t i e s  between  very  different  date  codes was 

prevalent .   Devices   or iginat ing f r o m  d i f fe ren t   manufac turers  were a l s o  sub- 

j ec t   t o   d i f f e rences   i n   su r f ace   p rocess ing   t echn iques ,   e t c .  

Comparing devices from d i f f e r e n t   s o u r c e s ,  as t o   t h e i r   r a d i a t i o n  

s e n s i t i v i t y ,   r a i s e d   t h e  problem  of  f inding  the  proper  quantity(ies)  in  terms 

of  which the  devices   could be  compared.  Both  and A W S E  were  used 

for  such  purposes.  A cons ide rab le   i n t e re s t  was focused  recently  on  the 

problem  of p red ic t ing   non l inea r  damage  by f ind ing   the   p roper   func t iona l  

r e l a t i o n  between  gain  degradation, i n  terms  of A l / h  and  f luence (or dose). 

A simple power law of the  form All/% = constant  ax (0  < x < 1) is advocated 

by some workers. Our r e s u l t s ,  however, i n d i c a t e  that other   funct ional   forms 

may be  more desirable.  Moreover, i f  some o f   t he   cu rves   fo r   ac t ive  NPN devices  

a r e   t o  be approximated by a power law then x > 1 value  should be included. An 

i n t e r e s t i n g   a n d   u s e f u l   r e l a t i o n  between  gain loss A$, and init ial  ga in ,  

was noted  experimentally,   resembling a c o r r e l a t i o n  between  these two q u a n t i t i e s  

i n  a certain  f luence  range.  Consequently,   an  approximate  prediction  of  gain 

i 

%Ei * 
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l o s s  f r o m  i n i t i a l  gain is p o s s i b l e   s u b j e c t   t o  some l i m i t a t i o n s   a n d  a form  of 

normalizat ion is e f f e c t e d  by u s i n g   r e l a t i v e   g a i n   l o s s  w h  . Empirical  

formulat ions  using  the  hyperbol ic   tangent   provide a reasonable hit between 

relative gain loss and  absorbed  dose. 

The degrada t ion   of   the   t rans is tor   parameters  are i n t e r p r e t e d  i n  terms 

o f   t he   cu r ren t  models  of  the effects  o f   i o n i z i n g   i r r a d i a t i o n  on oxidized 

s i l i c o n   s u r f a c e s .  Namely i n  terms of   the   pos i t ive   charge   accumula t ion   and  

of  the new i n t e r f a c e  states. A tremendous  difference i n   r a d i a t i o n   s e n s i t i v i t y  

between the   pass ive   and   ac t ive  N P N  devices was observed. The a c t i v e   b i a s  

during  exposure  strongly  enhanced  gain  degradation.  Charge  accumulation 0" 
t he  Si02 su r face  was a l s o  enhanced by t h e   a c t i v e   b i a s ;   t h e   r e d i s t r i b u t i o n   o f  

these  charges  during  off-beam  and  off-bias  periods  gave rise t o   s l o w   d r i f t s  

( r ecove r i e s )  i n  the   t r ans i s to r   pa rame te r s .  .No d i f f e r e n c e s  were noted, how- 

eve r ,  between  the  active  and  passive PNP devices. 

The hypothes is   o f   ion iza t ion   equiva lence   for   nonl inear  damage to   pas s ive  

t r a n s i s t o r s  was explored. In general ,   equivalences on t h e   b a s i s   o f   t o t a l   d o s e  

appea r   t o   ho ld   fo r  X-ray, gamma ray,   e lectron,   and  proton  exposure  of   passive 

PNP devices  and a l l  but  proton  exposure  of passive NPN devices.  An anomalous 

excep t ion   t o   t he   t o t a l   dose   equ iva lence   concep t   fo r   pas s ive   t r ans i s to r s  was 

observed  with 15 MeV proton  nonl inear  damage t o  NPN t r a n s i s t o r s .  

Act ive  operat ion  during  exposure  s ignif icant ly   enhanced  the  sensi t ivi ty  

of NPN t r ans i s to r s   t o   e l ec t ron   i nduced   non l inea r  damage. Lat in  cube com- 

puter   ana lys i s   o f   the   mul t i fac tor   exper imenta l   des ign   provided   da ta  on the 

dependence  of damage  on e l e c t r i c a l   b i a s i n g  and revealed  information on t he  

interdependences  between  current,   voltage,  and dose.  Because  of  the  in- 

crease of damage f o r   a c t i v e  NPN devices and because of  p o s t   i r r a d i a t i o n  re- 

covery,  pulse tester techniques were developed  for  the  2.9 MeV e l e c t r o n  test  

and the   15  MeV proton test .  The pulse  tester measurements were made i n   s i t u  

without  disconnecting any b i a s   vo l t ages .   In   t he   15  MeV proton test i m -  

po r t an t   anomal i e s   i n   t he   r a t io   o f   ac t ive   t o   pas s ive  NPN t r a n s i s t o r  damage 

was observed. 

Displacement  equivalence  values were updated. Computer ana lys i s   o f   the  

o l d   d a t a  (NAS5-9578)  was a l so   used   to   ob ta in  damage c o n s t a n t s   a t  I = 2 . 8  ma 

and in   tu rn   equiva lence   va lues   for   d i sp lacement  ,damage. The independence  of 
E 

6 



equivalence value6 on c u r r e n t   i n j e c t i o n   l e v e l   f u r t h e r   e x t e n d s   t h e   v a l i d i t y  

and  usefulness of the  equivalence  concept.  Damage cons tan ts  for gamma ray 

d isp lacements   vere   rev imd by ex tended   tes t ing   to   h igh  exposures. 

Extended proton testa helped t o   c l a r i f y   t h e   r e l a t i v e  role of  ioniza- 

t ion  and  displacement   effects .   Al though  nonl inear  damage appears   to   dominate  

a t  l o v  exposures, the  concept   of   ionizat ion  equivalence  appears  t o  be v i o l a t e d  

by proton damage, The f e a s i b i l i t y  of  combined tes t ing   ( s imul taneous   p ro ton  

p lus   e l ec t ron )   vas   e s t ab l i shed ,  the recommended test s e t u p  is described,  and 

the  need  established.  Conclusions from the  phase I1 work and  recommendations 

f o r  a future  phase I11 program are d e s c r i b e d   a n d   j u s t i f i e d   i n   S e c t i o n s  2.0 

and 4.0. 
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I 

2.0 DETAILED  DISCUSSION OF PHASE I1 WORK 

Phase I1 work included extensive pre-test p r e p a r a t i o n s  of t r a n s i s t o r s ,  

execu t ion   o f   fou r   r ad ia t ion  tests, and d e t a i l e d   a n a l y s i s   o f   t h e  t e s t  r e s u l t s .  

Radiat ion tests inc luded   s teady  state and   pu lsed   e lec t ron   exposures ,   ex tens ion  

of  Phase I cobalt-60 g a m m a  ray  exposure,   and  extended 15 MeV proton  exposure.  

The r a d i a t i o n  test  p l ans  were devised  to   provide  data   on:  1) t h e   c h a r a c t e r i z a -  

t i on   o f   non l inea r  damage, 2) the   i n f luence  of e lec t r ica l   b ias ,   dur ing   exposure ,  

on damage bui ldup,  3 )  the  updating .of  displacement  equivalence  infonnation,and 

4)  t h e   f e a s i b i l i t y  of conducting  simultaneously combined r a d i a t i o n   t e s t i n g .  

2.1 PREPARATION OF TRANSISTORS 

Pre t e s t   p repa ra t ion   o f ’   t r ans i s to r s   i nc luded   s e l ec t ion ,   bu rn - in ,   and  

e l e c t r i c a l   c h a r a c t e r i z a t i o n .   T r a n s i s t o r s  were procured as s p e c i f i e d  by type,  

manufacturer,   and  date  code. They  were “burned-in” by high power s t r e s s i n g  

and c u l l i n g  was performed  on  the  basis of bo th   manufac turer   spec i f ica t ions  

and i n s t a b i l i t y   o f  key e l ec t r i ca l   pa rame te r s .  A d e t a i l e d   e l e c t r i c a l   c h a r a c -  

t e r i z a t i o n   o f  a l l  t e s t  t r a n s i s t o r s  was performed. 

2.1.1 Se lec t ion   o f   T rans i s to r s  

Emphasis  of the  Phase I1 program was placed  on  the npn (2~1613) and  the 

pnp (2Nll32) ox ide   pas s iva t ed   d i f fused   p l ana r   t r ans i s to r   t ypes .  They  were se- 

l e c t e d  from the 10 si l icon  types  previously  s tudied  under   Phase I (NAS5-9578). 
In   t he   p rocess   o f  Phase I work the  importance  of   ionizat ion-induced  surface  ef-  

f e c t s  were emphasized,   prel iminary  empir ical   character izat ion was attempted,  and 

an   hypothes is  was made concerning its o r i g i n .   I n  Phase I1 only two r e g i s t e r e d  

t y p e s   o f   t r a n s i s t o r s  were s e l e c t e d ,   i n   o r d e r   t o   s t u d y  more e f f ec t ive ly   t he   sou rce  

o f   t h i s   s u r f a c e   e f f e c t   a n d  its dependence  on  the  type  and  energy  of  incident 

r a d i a t i o n  as well as its s t a t i s t i c a l  dependence  on da te  code  and  manufacturer. 

A group  of 356 t r a n s i s t o r s  were procured  for  Phase I1 study.  These 

t r a n s i s t o r s  were s e l e c t e d  from two d i f f e ren t   manufac tu re r s   (Fa i r ch i ld   and  

Ray theon)   w i th   spec i f i ed   l o t s  of d i f f e r e n t   s e r i e s  numbers. The t r a n s i s t o r   s e r i e s  

numbers a r e   r e l a t e d   t o   t h e  work items of   Sect ion 1.2 as  i n d i c a t e d   i n   T a b l e  1. 
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Device 
and 

Manuf ac ture r 

F-2N1613 

F-2N1613 

F-2Nl613 

F-2Nll32 

F-2~1132 

F-2N1132 

R-2N1613 

R-2N1613 

R-2N1613 

R-2~1132 

R-2N1132 

R-2~1132 

TOTAL 

Table 1. Ident i f ica t ion  of Phase I1 Transis tors  

Date 
Code 

701 

552 

615 

721 

736 

621 

446 

6545 

6625 

6523 

6649 

6710 

1 Mev Electron 

No Bias 

10 

10 

10 

10 

10 

10 

10 

10 

10 

10 

a 
10 

118 

Bias 

20 

20 

10 

20 

20 

10 

100 

2 Mev Electron 
~ 

No Bias 

16 

Bias t 
15 Mev Proton 

No Si& 

13 

8 

21 

Bias 

a 

Total  
Tested 

59 

30 

20 

10 

10 

10 

10 

10 

10 

50 

30 

20 

269 

NOTE: F = Fairchi ld  

R = Raytheon 



Unbiased   (pass ive)   t rans is tors   inc luded  38 F a i r c h i l d  2~1613, 30 Raytheon 

2 ~ 1 6 1 3 ,  36 Raytheon 2N1132, and 30 Fa i r ch i ld   2Nl l32   u sed   i n   t he   e l ec t ron  tes t s  

and 13 F a i r c h i l d  2N1613 and 8 Raytheon 2N1132 used i n   t h e  15 MeV proton tes t .  

B iased   ( ac t ive )   t r ans i s to r s   i nc luded   52   Fa i r ch i ld  2N1613 and  52  Raytheon 2N1132 

used i n   e l e c t r o n  tests and 6 F a i r c h i l d   2 ~ 1 6 1 3  and 2 Raytheon a1132 used i n  

15 MeV proton tests. The b iased   devices  were used t o   r e v e a l   t h e   i n f l u e n c e   o f  

t h e   d i f f e r e n t   b i a s   c o n d i t i o n s  on the  nonl inear   gain  degradat ion.  Date code 

s e r i e s  number s e l e c t i o n s  were made no t   on ly   t o   obse rve   d i f f e rences  of  damage for 

d i f f e r e n t  series numbers,  but a l s o   t o   p r o v i d e  more a s su rance   t ha t   t he  sernicon- 

duc tor   ba tch ,   the   cons t ruc t ion   de ta i l s ,   and   the   sur face   condi t ions   wi th in  one 

tes t  u n i t   a r e   t h e  same. The date code marked on  the  device  can is simply  an 

ind ica t ion   of   the   year   and   the  week  when the  device  passed its f i n a l   e l e c t r i c a l  

t es t  during inanufac tu r ing .  

2.1.2  Burn-in  and Cu l l ing   o f   T rans i s to r s  

All t r a n s i s t o r s  were given a 75 hour   "bu rn - in f f   t e s t   i n   o rde r   t o   e l imina te  

those  devices which  were i n i t i a l l y   o f   p o t e n t i a l l y   p o o r   q u a l i t y .   E l e c t r i c a l   b i a s i n g  

condi t ions for the  burn-in was chosen  (Table 2)  i n   o r d e r   t o   o p e r a t e   t h e   d e v i c e s   a t  

near  maximum cur ren t   and   vo l t age   s t r e s s .  

Table 2. Biasing  Conditions  for  Burn-in 

Device 
Type IE (ma) Power Di s s ipa t ion  (mu) VCE ( v o l t s )  

2N1613 

570 19 30 2N1132 

760 19 40 

The burn-in t e s t  was conducted   us ing   c i rcu i t s  as shown i n   F i g u r e  2. E l e c t r i c a l  

parameters t o  be used fo r   de t e rmin ing   dev ice   s t ab i l i t y  were  measured  on  the 

F a i r c h i l d   S e r i e s  500 t r a n s i s t o r  t es te r  both  before   and  af ter   burn-in.  The c r i t e r i a  

f o r   c u l l i n g   o f  some t r a n s i s t o r s  were e i t h e r   f a i l u r e   t o  meet manufac turer ' s   spec i f i -  

c a t i o n s  or e x c e s s i v e   d r i f t s   i n   e l e c t r i c a l  parameters. 
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Q + = 44 V  AT 1.6 AMPERE PER BOARD OF 40 DEVICES 

I 
N P N  

1 OOR 

4ov 

2o.N 
1K 1K 

F . 21.0v 

R2 3.8K 4 $ 510 s? 510Q 

! 1 1 "" 
b ov R1 AND R2 ADJUSTED TO GIVE 

20.4 V EMITTER 

-45.7V AT 1.3 AMPERE PER BOARD OF 40  DEVICES 

T 
- - " 

PN P 

R1 A N D  R2 ADJUSTED TO GIVE 

-22.5V EMITTER 

Figure 2. Burn-In Test ClrcuItr 
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2.1-3 E l e c t r i c a l   C h a r a c t e r i z a t i o n  of T r a n s i s t o r s  

2.1.3.1 . F a i r c h i l d  Series 9 0  Tes t  Data 

The F a i r c h i l d  Series 9 0  t r a n s i s t o r  tester was programmed to automatical ly  

perform 16 s e q u e n t i a l  measurements p e r   t r a n s i s t o r .  ~ a t a  from all t r a n s i s t o r s  was 

automatical ly   logged  on IBM ca rds   u s ing  a F a i r c h i l d  Model Option K data logging 

module,  and a n  IBM 526  Card Punch. 

The F a i r c h i l d  Series 500 t e s t  s e t  was programmed t o  measure the   fo l lowing  

parameters:  d.c. common emi t t e r   cu r ren t   ga in ,  h, a t  a co l l ec to r   vo l t age   o f  10 

v o l t s  and a t  emitter c u r r e n t s  of 10, 30, and 100 pa, 1, 3, 10, 20,  and 40 ma; 

v ( s a t )  a t  = 10 f o r  IC = 150 ma; I a t  -VCB = 5, 20,  and 60 v o l t s  f o r  
CE CBO 

w1613ts and -VCB = 5 ,  20, and 50 v o l t s   f o r  2N1132Is; IEm a t  -VEB = 1, 3, 
and 6 vo l t s   ( excep t  f o r  F a i r c h i l d  2N1132Is  which were t e s t e d  a t  1, 2, and 4 
v o l t s ) .   C u r r e n t   g a i n   v a l u e s   f o r   c o l l e c t o r   c u r r e n t s   o f  2 ma and  above were made 

us ing   the   shor t   pu lse  mode (350 pet) i n   o r d e r   t o  limit device  heating. A Wyle 

Environmental Chamber Model CN 1060640 is used   t o   con t ro l   t he   ambien t   t r ans i s to r  

temperature   to  35 2 1/2OC during measurement.  Following i r r a d i a t i o n   a u x i l i a r y  

equipment f o r  low ga in   readings  on the  Fairchi ld   (below a gain of 1.9) were 

occasionally  required  and  used. 

To v e r i f y   i n s t r u m e n t   r e p e a t a b i l i t y   " s t a n d a r d t t   t r a n s i s t o r s  were  measured 

pe r iod ica l ly   and   va lues   a r e  compared wi th   those   ob ta ined   ear l ie r .  Measurement 

of   wi th   and   wi thout   cor rec t ions   for   increased   leakage   cur ren t  were compared. 

I n   g e n e r a l   i n c r e a s e   i n   l e a k a g e   c u r r e n t  was too  small t o   e f f e c t  a change i n  

values.  
%E 

2.1.3.2 Spec ia l  Measurements  on Selected  Devices 

Table 3 summarizes t h e  program of s p e c i a l   t r a n s i s t o r  measurements made 

on se l ec t ed   dev ices   fo r  1 MeV e l e c t r o n   t e s t s  of Tasks A and B. 

I and IB Versus V ( a t  35°C) C BE 

This  type  of  measurement was u s e f u l   i n   t h e   p a s t   i n   l o c a t i n g   t h e   r a d i -  

a t i o n  damaged region of a t rans is tor   thus   in   p rovid ing   c lues   about   the   source  

of   the  nonl inear  damage. Early work has shown tha t   t he   d i f f e ren t   base   cu r ren t  

components, o r ig ina t ing   i n   t he   d i f f e ren t   t r ans i s to r   r eg ions ,   cou ld   be   i den t i f i ed  

from the  I versus  V measurements.  (Ref. 3 ) .  The limits of i n t e r p r e t a t i o n ,  

the   s ign i f icance   o f   the   da ta ,   toge ther   wi th   the   phys ica l   o r ig in   o f  IB a re   d i s -  

cussed  in  Appendix I. The usefulness  of  the  measurements  in  our work is  de- 

mons t ra ted   in   Sec t ion  2.3.5.  

B BE 
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P 

Measurement 

I and I versusV 
C B HE 

tb from (db) tester 
%E 

Table 3. Special Measurements on Transistors 

7- 

T = 35'C 
VBE L (0.1-0.72)V 

T = 35'C 
vBE - N 
vBc = 1ov 

T - 35'C-m0°C 
v, = 2v 

= 1ov 

T = 35°C 
T = 100°C 

T - tom ternprature 

T = room temperature 
v = (&6)V - (0-241V 

Uhen Heasured I Number of the 

&fore and after i r rad ia t ion  
=After every third % 

After'each SK 

After each % 

Before and after  irradiation 

Before and after  irradiation 

1- 
1- 

T m I m i s t o  
-3 

20 
5 

10 

10 

5 
5 

10 

5 

i n  Types 
a1132 

20 
5 

10 

lo 

5 
5 

10 

5 

70 70 

: A l l  lo birs trurshton 
in th 1 MeV electron 
Lest) 



The measuring  curcuit   used is  g iven   in   F igure  3 .  The cu r ren t  was measured 

by a Kei thley Model  410 micro-microammeter  below 3 x 10  ampere  and  by a Weston 

Model 62 mill iampere meter above 3 x ampere. The vol tage  source  used was a 

Power Designs Model 2005  precis ion power supply. A s p e c i a l   e l e c t r i c a l   c i r c u i t  

control led  the  temperature   of   the   copper-cyl inder   over   (35 2 0.l"C) i n  which the  

t r a n s i s t o r s  were posi t ioned.  A t y p i c a l  I and IC ver sus  V curve is shown i n  

Figure 4 f o r  a 2Nl l32   t rans is tor .  Two base  current  components  of I a r e   i d e n t i -  

f i e d   i n   t h i s   f i g u r e .  

-4 

b BE 

B 

CBE and C a t  Zero Bias and C and C Versus  Reverse Bias 

(Room Temperature) 
BC BE BC 

The measurements  of  the  junction  capacitances  were also u s e f u l   i n   s t u d y i n g  

nonl inear  damage i n   t r a n s i s t o r s   s i n c e   t h e y   i n d i c a t e   t h e   o n s e t  and exis tence  of   sur-  

face  inversion  during  exposure.  

The measurements  were ca r r i ed   ou t  by u s i n g   t h e  Boonton Model  74C-58 ca- 

pacitance  bridge  with i t s  bu i l t - i n   b i a s   supp ly .  The b i a s   vo l t age  was monitored by 

a Fluke Model 801 d i f f e ren t i a l   d . c .   vo l tme te r .  The 100 KHz s i g n a l   l e v e l  was 2 20 mv 

as monitored by a Hewlett-Packard Model 400H a.c.   voltmeter.  

Figure 5 shows capacitance  versus  voltage  data  with  and  without an assumed 

value of  t he   j unc t ion   con tac t   po ten t i a l   fo r  a 2~1613 t r a n s i s t o r .  The s lope  of the 

l i n e s   g i v e s   t h e   a n t i c i p a t e d  power law dependence of  the   capac i tance   on   vo l tage ,  

C o (  V . The K va lue   for   the  2N1613 t r a n s i s t o r  is -2.9. K values  should  be com- 

pared  with  those  obtained from t h e  power law dependence  of  the  bulk  space  charge 

recombinatiun-generation cu r ren t  on   vo l tage   s ince   in   bo th   cases   the  power law  de- 

pendence  simply r e f l e c t s   t h e   v o l t a g e  dependence  of  the  junction  width.  

K 

Reverse  Current (I, LBO, IcBo)  Measurements 

The r e v e r s e   c u r r e n t s  by the i r   phys i ca l   o r ig in   ( t he rma l   gene ra t ion   cu r ren t s  

i n   t h e   d i f f e r e n t   t r a n s i s t o r   r e g i o n s ;   S e e   d i s c u s s i o n   i n   t h e  Appendix) are  e x c e l l e n t  

monitors  of  surface  conditions.   Consequently,  IEBO (2V)  and I (1OV) ia ta  a t  

3 5 ° C  were  taken  before and dur ing   the  1 MeV e l e c t r o n  tes t .  I n   a d d i t i o n ,   i n   o r d e r  
C BO 
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Figure 3. Circuit Diagrams  for  the IC, I B  Versus VBE and IEBO lCB0 Measurements 

15 

I 



1 '" o-2 L 

FORWARD BIAS, VBE ( V O U S )  

Figure 4. Typical IC and I Versus VBE Dclta (2N1132) 6 
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0 MEASURED VALUES 
0 VT = 0.7 VOLTS ADDED 

1 0-1 1 oo lo1 
REVERSE BIAS, VBE (VOLTS) 

Figure 5 .  C and CBc Versus  Reverse  Bias (2N1613) (Data are shown with and without an BE 
assumed value for  the junction contact potential, V T) 



t o   o b t a i n  a more comple te   charac te r iza t ion  of our s e l e c t e d  group of p lana r  

d e v i c e s   p r i o r   t o   i r r a d i a t i o n ,  Imo,  ICBO versus  Temperature  and I EBO' %BO 
versus  Voltage  measurements were also c a r r i e d   o u t .  The information  obtained 

was somowhat complementary t o   t h e  IB ver sus  V a n a l y s i s ,  i.e., t h e  r e l a t ive  

importance of t h e   d i f f e r e n t  spatial components  of  the  thermal  generation  cur- 

rents was revealed. The fo l lowing   f igures  show t h a t   b e f o r e   i r r a d i a t i o n  the 

surface component of the reverse   cur ren t  was n e g l i g i b l e   f o r   t h e  NPN but not 

f o r   t h e  PNP devices .  

BE 

IEBO (2V) and ICBO (1OV) versus   inverse   temperature   curves   are  shown 

i n   F i g u r e s  6 and 7 t oge the r   w i th   t he   ac t iva t ion   ene rg ie s   cha rac t e r i z ing   d i f -  

f e r e n t   c u r r e n t  components i n   d i f f e ren t   t empera tu re   r anges .  The a c t i v a t i o n  

ene rg ie s  o f 2  0.6 eV and %1.2 eV obtained from the   s lopes   i nd ica t e   t he   bu lk  

space-charge  region  generat ion  current ,  and   t he   d i f fus ion   cu r ren t ,  

r e spec t ive ly .  The measur ing   c i rcu i t  is shown i n   F i g u r e  3 .  The instruments  

used  were  the same as t h o s e   i n   t h e  I 2nd 1 ver sus  V measurements. A d i f -  

ferent   temperature  chamber was used,  however, a new oven w,?s  constructed  of 

aluminum to  have s smaller thermal mass. 

IBRG ID , 

C B BE 

The IEBO and I versus  voltage  measurements  were  carried  out  on 10 CBO 
devices  and a r e  shown i n   F i g u r e s  8 through 11 f o r  35°C and 100°c r e s p e c t i v e l y .  

A t  35°C IBRG is dominant  over I A t  1 0 0 ° C  ID starts to  dominate  1 A t  D' BRG 
35°C t he   cu r ren t  

below 100 mv and 

d i c t e d  power law 

of 2N1613 g iv ing  

va lues  were so low t h a t  is was i m p r a c t i c a l   t o   t a k e  I d a t a  

ICBO d a t a  below 10 mv. For VCB above  about 100 mv the  pre-  

dependence  of  (Inw)  on  voltage is c l ea r ly   s een   fo r   t he   ca se  

EBO 

T*VK = V2*2. (K = s?g was ob ta ined   i n   t he  C ve r sus   r eve r se  
DAU 

BC 
b i a s  measurement, the  discrepancy is not  understood.) The ICBO versus  V curve 

i n   F i g u r e  9 f o r  2N1132 does   no t   l end   i t s e l f   t o   s imp le  power law ana lys i s ,   Th i s  

apparent ly   indicates   the  presence  of  some o the r   cu r ren t  component  above 100 mv, 

presumably a s u r f a c e   g e n e r a t i o n   c u r r e n t   i n   t h e   t r a n s i t i o n   r e g i o n .  
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A t  1 0 0 ° C  the  buildup  of  current  between 1 mv and 100 mv is due t o  the 

d i f f u s i o n   c u r r e n t .  Above 100 mv the   cu r ren t   r eaches   s a tu ra t ion ,  a t  least f o r  

t he   2~1613 ,   i nd ica t ing   t he   absence   and   t hus   t he   r e l a t ive   i n s ign i f i cance   o f   t he  

IBRG component i n   t h i s   t empera tu re   r ange .  

tb from Values 

Base transit time values  wen determined from data.  The  whole  pro- 

cedure is d e s c r i b e d   i n   c o m p l e t e   d e t a i l   i n  a later s e c t i o n  where the  method of  

ob ta in ing   base   t r ans i t  time values  for devices  used i n   t h e  Phase I program is 

presented. Small signal a.c.  current  gain  measurements were made, a t  room 

temperature,   using a F a i r c h i l d  Model 7515s tester. This  instrurnent  measures 

i n  db t o   t h e   n e a r e s t  1/2 db. 

Values  of base t r a n s i t  time were used i n  Phase I s t u d i e s   t o   e f f e c t i v e l y  

normalize  l inear   displacement  damage. Consequently tb values  are useful  

i n   t he   e f f ec t ive   s epa ra t ion   o f   l i nea r   and   non l inea r  damage. 

2.2 RAD1 ATION TESTS 

Four s e p a r a t e   r a d i a t i o n  tests were conducted  during  this  program.  These 

included  steady s t a t e  1 MeV electron  exposure  using  the Dynamitron a c c e l e r a t o r ,  

Cobalt-60 gamma exposure  using  the Gammacell 200, 2.6 MeV electron  exposure 

using  the  Linac  accelerator ,   and 15 MeV proton  exposure  using  the Helium-3 

deuterium  reaction. The l a t t e r  two tests were conducted i n  a combined beam 

conf igura t ion .   Resul t s   o f   these   t es t s  are l a t e r  summarized i n   t h i s   r e p o r t  ac- 

cord ing   to   the  major t a s k s   t o  be accomplished. 

2.2.1 1 MeV Elec t ron  Test 

The 1 MeV e l e c t r o n  tes t  provided most of   the   da ta  for Task A on general  

charac te r iza t ion   of   nonl inear  damage as well as da ta  for Task B on  the  inf luence 

of   cont inuous  bias   during exposure. 

The e l e c t r o n  t e s t  s e t u p   u s e d   i n   t h e   i n i t i a l  Phase I work (NASA r e p o r t ,  Ref. 2, 

NAS CR-814) was improved i n   p r e p a r a t i o n   f o r   t h e  1-MeV e l e c t r o n  tes t .  The beam 

handling  system is e s s e n t i a l l y   t h e  same as t h a t  shown i n   F i g u r e  12. Changes t o  

t h i s  system  include: 1) a four element slit system  (current   pickup  capabi l i ty  

on the   s l i t s )   u sed   t o   pos i t i on   and   mon i to r   t he  beam, 2) a n   a u t o m t i c  remote 
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con t ro l l ed   ro t a t ing   Fa raday  cup for   dosimetry mapping, 3 )  a n  aluminum block 

mounted bes ide   the   ro ta t ing   Faraday  cup. This   can   be   ro ta ted   in to  a p o s i t i o n  

to   block  and  monitor   the  e lectron beam a t  its e n t r a n c e   t o   t h e  t e s t  chamber,  and 

4) a one-fourth-inch  thick aluminum  diaphragm  mounted s o  as t o   b a f f l e   e l e c t r o n s  

s c a t t e r e d  a t  large angles  and  prevent them from increas ing   the  low energy  back- 

ground a t  the   t rans is tor   mount ing   p la te .  

A 10 m i l  aluminum f o i l  was s e l e c t e d   i n   o r d e r   t o   o b t a i n  a reasonably 

uniform  exposure  of  transistors  posit ioned  on a l a r g e   d i a m e t e r   r i n g ,   c y l i n d r i c a l l y  

symmetr ica l   to   the  beam ax i s .   Sca t t e red  beam i n t e n s i t y   v e r s u s   s c a t t e r i n g   a n g l e  is 

shown i n  Figure 13;. Rings of t r a n s i s t o r s  were loca ted  a t  22 and 26 degrees   scat-  

t e r i n g   a n g l e  

TLD powder dosimeters were mounted i n   t h e  t es t  chamber  during  the beam 

mapping t e s t s .   To ta l   dose  as determined from  measurement of the TLD powder, 

agreed well wi th   f luence   va lues   ca lcu la ted  from current   reading  taken from the  

rotat ing  Faraday cup. 

Other   re levant   exper imenta l   de ta i l s  of the 1 MeV e l e c t r o n  tes t  a re   g iven  

below: 

Source ~~ of   e lec t rons :  The Dynamitron accelerator   provided  the Ix: e l e c t r o n  

beam. The beam ene rg ie s  were approximately  1.4, 1.3, and 1 MeV when inc iden t  on 

the 10 m i l  A 1  s c a t t e r i n g   f o i l ,  on  the 8 - 11 m i l  Kovar t rans is tor   can   and  on the 

S i   ch ip   r e spec t ive ly .  Although e l ec t rons   w i th  1 MeV energy   cause   l a t t i ce   d i sp lace-  

ments i n   s i l i c o n ,   t h e  number of  such  events is r e l a t i v e l y  small below about 10 

electrons/cm2  fluence. No e f f e c t s  on the   t r ans i s to r   pa rame te r s  due t o   l a t t i c e  

displacements were observed  below  the  quoted  fluence  value.  Fluence  values  noted 

on a l l  p lo t s   a r e   no t   fo r   exposure  on t r ans i s to r   cans ,   bu t   r a the r   co r rec t ed   fo r   t r ans -  
mission l o s s  through  the  metal  cans,  i .e.,   exposure on the   s i l i con   ch ip .  

Beam i n t e n s i t i e s :  Exposure rate was increased by a fac tor   o f   about  50 
during  the  course  of   the   experiment .   ( Ini t ia l   s tages:   1 /2  )m; f i n a l   s t a g e s :  

24 pa inc iden t  beam o n   t h e   s c a t t e r i n g   f o i l . )  Such v a r i a t i o n  was a p r a c t i c a l  

necess i ty   i n   o rde r   t o   cove r   abou t  4 orders  of  magnitude i n   f l u e n c e   v a l u e s  

within  reasonable times. The absence   o f   r a t e   e f f ec t s  was ver i f i ed   du r ing   t he  
Linac   e lec t ron  tests.  

15 

Temperature   of   i r radiat ion (as monitored  by a Copper-Constantan  thermo- 

couple ,   fas tened  to   the  t ransis tor   cans) :   Temperature   var ied  between 25 and 

32OC for   the  unbiased  t ransis tors   and  between 35 and 41Oc fo r   t he   b i a sed  
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t r ans i s tom.   i nc reased   g radua l ly  as h igher   and   h igher 'beam  in tens i t ies  

were  used. M o s t  o f   t he   b i a sed   t r ans i s to r s  w e r e  h e a t s i n k e d   i n   o r d e r   t o   a v o i d  

excessive  temperatures due t o   i n t e r n a l   h e a t i n g .  

Fluence  values: 17 f luence   po in ts  were chosen i n   t h e  range  of  about 

3 x 10l1 - 3 x 1015 electrons/crn . I n   t h e   c a l c u l a t i o n  of t he   ac tua l   f l uence  

. va lues   t he   t r ansmiss ion   l o s ses   su f f emd  by the   e l ec t rons ,  when t r ave r s ing   t he  

2 

t r a n s i s t o r  cam, were taken  into  account .   Thus,  a l l  f luence  values  shown  on 

p lo t s   and   t ab l e s  is f o r   r a d i a t i o n   i n c i d e n t  on the  semiconductor  chip. 

Measurement ~~ c o n d i t i o n s   a f t e r   i r r a d i a t i o n :  The b ias   supply  was turned   of f  

wi th in  two minutes a f te r   comple t ion   of  a g iven   i r rad ia t ion .   Genera l ly ,   the   pu lse  

measurements  of  gain  and  other  parameters w e r e  s t a r t e d  on the   Fa i r ch i ld   Se r i e s  

500  within less than  an  hour  and were  completed  within  an  additional 2-1/2 hours. 

Forward b i a s i n g   o f   c e r t a i n   s e l e c t e d   d e v i c e s   a l s o   t o o k   p l a c e  from  time t o  time 

during  the I and IC vs. VBE measurements.  The  reason fo r   s t r e s s ing   t hese   cond i -  

t i o n s  now is t h a t   i n   c e r t a i n   c a s e s  a recovery of su r face  damage was observed  in- 

between i r r a d i a t i o n s ,   e v e n  a t  mom temperature.  This  recovery  might  have  been a 

simple  function  of time and/or i t  might h v e  been i n i t i a t e d  or acce le ra t ed  by the 

measurement i t se l f  (due to   the   in jec t ion) .   Consequent ly ,  i t  was d e s i r a b l e   t o  

monitor  the  conditions.  

B 

2.2.2 Cobalt-60 Gamma Ray Tes t  

The  Cobalt-60 gamma ray   t es t s   p rovided  data not  only for revised  values   of  

displacement damage cons tan ts   and   equiva lences   bu t   a l so   p rovided   fur ther   in foma-  - 

t i o n  on techniques  for   s imulat ion  tes t ing.  

T rans i s to r s  were  mounted  on a cy l indr ica l   ho lder   and   lowered   in to   the  

center   o f  a cy l ind r i ca l   sou rce   a r r ay .  The cy l ind r i ca l   sou rce   a r r ay  was contained 

i n  a Gammacell 200, shown i n   F i g u r e  14. The i r r a d i a t i o n  was conducted i n  air. No 

e l e c t r i c a l   b i a s  was app l i ed   t o   t he   dev ices   du r ing   i r r ad ia t ion .  The r a d i a t i o n   f i e l d  

was mapped using  cobal t   g lass   chips .   These  chips  were  read,  using a Beckman DU 

spectrophotometer ,   to  a r e l a t ive   accu racy  of  about 5.0 percent  and  an  absolute 

accuracy  of  about 10.0 percent .   Exposure   dose   ra tes   for   th i s   conf igura t ion   a re  

shown i n  Table 4. 

Exposure  values  were  extended from t h a t  a t  the  end  of  the  Phase I con t r ac t  

(NAS5-9578), approximately 3 x 10 R t o  6 x 10 R. The extended  tes t ing  covered 

the   per iod  from Ju ly  1967 t o  August  29, 1968. 
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Figure 14: TRANSISTOR  MOUNT  FOR  GAMVACELL 200 
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Table 4. Gammacell 200 Exposure Dose Rates 

Transistor Phase I I Device No. I Dose Rate (R hr-l) I 
7.42 x lo4 4 
6.95 x lo4 
7.17 x lo4 
6.56 x 10 

7-30 X 104 4 
6.63 x lo4 
7.25 x lo4 
6.85 x 10 

7.22 x lo4 4 
7.32 x lo4 
6.57 x lo4 
6.95 x 10 

7.22 X lo4 4 
6.57 x lo4 
7.30 x lo4 
6.85 x 10 

7.43 x lo4 4 
6.95 x lo4 
7.07 x lo4 
6.53 x 10 ~ 

6.85 x lo4 4 
6.63 x lo4 
7.30 x lo4 
6.53 x 10 



2.2.3  2.9 MeV LINAC Electron6 

The e lec t ron   source   for   these  tests was the  LINAC which  provided a 

four  microsecond  pulse  of 2.9 MeV e l e c t r o n s  a t  a r e p e t i t i o n   r a t e  of e i t h e r  

15 o r  30 pulses  per  second. The e l ec t ron  beam was s c a t t e r e d  by a two m i l  

t i t an ium window. T h i s   f o i l   i s o l a t e d   t h e  LINAC vacuum system  from  the 

s c a t t e r i n g  chamber vacuum system  where  the  samples  were mounted  and a lso  

served as the  beam s c a t t e r e r .  A rotatable   Faraday  cup  capable  of being 

interposed  between  the LINAC and t h e  test  devices  was used t o   s e n s e   t h e  

e l ec t ron  beam cur ren t  and as an a id  i n   t u n i n g   t h e  LINAC. Rotat ing  the 

Faraday  cup  out  of  the way, t h e   s c a t t e r e d   e l e c t r o n  beam was de tec ted  by 

a cal ibrated  photodiode (D of  Figure 15) mounted  on t h e   t a r g e t   a p e r a t u r e  

p l a t e   nea r   t he   t e s t   t r ans i s to r s .   Pas s ive   dos ime t ry  was placed  inside  and 

o u t s i d e   t r a n s i s t o r  cans and the   p re l iminary   dos imet ry   t aken   cor re la t ing  

the  absorbed  dose  ( inside  and  outside  the  cans)  with  the  photodiode  response 

@ads   (S ig   pe r  pulse t imes number of   pu lses ) .   Dur ing   the   ac tua l   t es t ing   the  

photodiode was used as an   a id   fo r   ad jus t ing   t he   t a rge t   dose  and ac tua l   dos i -  

metry was taken   us ing   pass ivedos imeters   p laced   near   the   t rans is tors .  The 

f luence   o f   i nc iden te l ec t rons .pe r  Rad (Si)  absorbed by t h e   t r a n s i s t o r   c h i p  

ins ide   the   can  was 4.14 x 10 e lec t rons  cm-2/Rad (S i ) .  

3 

7 

2.2.4 15 MeV Protons 

Figure 15 i l l u s t r a t e s   t h e   t e s t   c o n f i g u r a t i o n   f o r   t h e  15 MeV proton 

test  and se rves  as a deta i led   d rawing   of   the   genera l   f igures   o f   Sec t ion  2.6. 

A two MeV He beam from the  Boeing  Radiation  Effects  Laboratory  Dynamitron 

was d i rec ted   on to  a deuter ium  loaded  t i tanium  target  and the  protons  produced 

i n   t h e  He3(D2, p)He4 r e a c t i o n  were  used f o r   t h e s e   t e s t s .  An i n i t i a l   h o r i z o n -  

tal mapping centered   about   the   t a rge t  and in   t he   p l ane   o f   F igu re  15 was made 

to   de t e rmine   t he   angu la r   d i s t r ibu t ion  of the  protons  and  their   energy de- 

pendence  on  angle. 

3 

A detector   system  consis t ing  of  a 2000 micron t h i c k   S i l i c o n   s u r f a c e  

b a r r i e r   d e t e c t o r ,  a pre-amplifier and a 512  channel  Nuclear  Data  pulse  height 

analyzer  was used  to  determine  energy  and  resolution. The de tec to r  was  mounted 

a t  t h e  end of  a ro t a t ab le   suppor t  a r m  ( t h e  same support  a r m  shown suppor t ing   the  
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rotatable  Faraday  cup  and D in Section  2.6) whose pivot   point  was d i r e c t l y  

above  the  deuterated titanium t a r g e t .  It was de termined   tha t   the  15 MeV 

protons emerged  from t h e   t a r g e t  a t  an  angle  of 90 degrees .   to   the He3 beam. 

A v e r t i c a l  mapping centered   about   the   t a rge t  a t  a r ad ius   o f  2.2  inches was 

then made to   de t e rmine   f l ux   un i fo rmi ty  a t  p o s i t i o n s  where the  test t r a n s i s t o r  

would be  placed. The  same detector  system was used i n   t h i s  mapping (Dl of 

Figure 99 of  Section  2.6)  and  another  monitor  detector (D,) was placed a t  

118 degrees   to   p rovide   moni tor   counts   cor re la ted   to   the   ver t ica l  mapping 

fo r   u se   du r ing   t he   ac tua l   t e s t ing .  A s c i n t i l l a t i o n   c o u n t e r  was mounted  on 

t h e   f r o n t   f a c e   o f   t h e   s c a t t e r i n g  chamber  and i t  viewed the  target   thrcugh a 

ho le   i n   t he   t a rge t   ape ra tu re .   Th i s   coun te r  was in tended   to  be used i n   t h e  

same capaci ty  as the  oronitor  detector  but i t  was found t h a t  its output  

(counts/rnin) was a func t ion   of  beam pos i t i on  on t h e   t a r g e t  and i t  WAS not  

used i n   t h i s   c a p a c i t y .   I n s t e a d  its output ,  which was recorded on a s t r i p  

char t   recorder ,  was used as a tun ing   ind ica tor  for t he  Dynamitron. The 

chamber ape ra tu re ,   t a rge t   ape ra tu re ,   t a rge t ,  and ta rge t   suppor t  were in su la t ed  

from  ground  and  any He3  beam s t r i k i n g  any of these  p a r t s  of  the  system was 

monitored i n   t h e   c o n t r o l  room to   p rov ide   s t ee r ing   i n fo rma t ion   fo r   t he  He3 beam. 

2 

- 

After   the  prel iminary  dosimetry  the  ver t ical  mapping de tec to r  was re-  

moved and t h e   t r a n s i s t o r  mounting sur face   ( see   F igure   16)  was a t t ached   t o   t he  

ta rge t   suppor t   s t ruc ture .   Pass ive   dos imet ry  was then   p l aced   i n s ide   t r ans i s to r  

cans which  were taken  frcm  the same b a t c h   o f   t r a n s i s t o r s  as t h e   t r a n s i s t o r s  

which  were tes ted.   This   provided  dosimetry  in   terms  of   rads   (Si)   correlated  to  

the  monitor  counts. The incident   proton  f luence  per  Rad (S i )  absorbed by the  

t r a n s i s t o r   c h i p   i n s i d e   t h e   c a n  was 2 x 10 protons cm /Rad (S i ) .  6 -2 
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Figure 16: TRANSISTOR  MOUNTING  FIXTURE 
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2.3 TASK A CHARACTERIZATION OF NONLINEAR DAMAGE 

2.3.1 Dependence of  Nonlinear Damage on  Measurement Current  

One of t h e   t a s k s   o f   t h i s   c o n t r a c t  was t o   e v a l u a t e   e m p i r i c a l l y   t h e  de- 

pendence  of non l inea r  damage on t h e   c o l l e c t o r  or emitter c u r r e n t ,  a t  which 

the   cu r ren t   ga in  is measured. Some da ta  were generated  from  extended  analysis 

of the  phase I tests,  but  most of   the  data r e s u l t e d  from new tes t s  performed 

u n d e r   t h i s   c o n t r a c t .  

Computer a n a l y s i s   o f   t e s t   d a t a   o b t a i n e d   i n   c o n t r a c t  N A S  5-9578 was per- 

formed i n  accordance  with  the  technical   proposal .   This   analysis   provided 

fu r the r   i n fo rma t ion  on the  dependence  of  nonlinear  degradation on the  value 

o f   c o l l e c t o r   c u r r e n t  a t  which the   ga in  was measured as well a s   f u r t h e r   v a l i d i t y  

of equivalences  for   displacement  damage ( t h e   l a t t e r  w i l l  be d i s c u s s e d   i n  

Sect ion  2 .5) .  An example  of  the  increase i n   n o n l i n e a r  damage wi th   decrease   in  

the   va lue   the   co l lec tor   cur ren t  (10, 5 and  2.8 ma) from the  phase I t e s t  is 

shown i n   t h e  computer p lo t   o f   F igure  17. The separa t ion   of   nonl inear  damags 

f o r   t h e  10 d i f f e r e n t   t y p e s  of  t r a n s i s t o r s  exposed t o  0.5, 1.3, and 2.0 f4eV 

e l e c t r o n   i r r a d i a t i o n s  have  been  completed  and are shown i n   S e c t i o n  2.3-3-1. The 

dependence  of damage on  measurement current   found from extended  computer 

ana lys i s   o f   t he   t en   t ypes   o f   t r ans i s to r s  from  phase I tes ts  was i n  agreement 

with more ex tens ive   da ta   ob ta ined  on the two t r ans i s to r   t ypes   u sed   i n   t he  new 

tests. 

Measurements  of  gain f o r   t h e  1 MeV e lec t ron   and   o ther   phase  I1 tests 

were made a t  c o l l e c t o r   c u r r e n t s  from 10 pa t o  40 ma.  An example of how the 

s igni f icance   o f   nonl inear  damage inc reases  a t  low measurement c u r r e n t s  is 

i l l u s t r a t e d   i n   F i g u r e  18. Data shown i n   t h a t   f i g u r e  are values  averaged from 

30 2N1613 Fa i rch i ld   t r ans i s to r s   exposed   pas s ive ly   du r ing   t he  1 MeV e l e c t r o n  

t e s t .  The nonl inear   charac te r  of the damage is i n d i c a t e d  by the   devia t ion  

from the  l1linear1'   displacement  l ine.  The bas is   o f  that l i n e  and  equations 

r e l a t i n g   t o   d i s p l a c e m e n t   e f f e c t s   a r e   d i s c u s s e d   i n   S e c t i o n  2.5. 

The f ac t   t ha t   t he   non l inea r   cu rves  are n e a r l y   p a r a l l e l   c a n  be explained 

q u a l i t a t i v e l y .  The func t ion  &/h which is p l o t t e d   a e i n s t  +, can be ex- 

pressed as 
FE' 
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10 

0 / A(l/hFE) = K@ 

0 

A 

0 

Fluence 
2N1711 Test 22 Pos i t ion  2 1.3-Mev E l e c t r o n   I r r a d i a t i o n  

Delta Inverse DC Gain  vs  Fluence,  Family  of E m i t t e r  Currents,   Collector  Voltage = 10.0 
Test Trans Type Trans No. Batch Make Cutoff N m l  Freq Case 

22 1 7 1 1  8 513 FCLD 113.64  147.81 ON 

Symbol Curve Current Max Gain Min Gain 

0 1 2.8 0.04030 0.00244 
A 2 5.0 0.03825 0.00209 
0 3 10.0 0.03657 0.00164 

Tabulation  of  Array  Points 

Curve 1 Curve 2 Curve 3 

Fluence  Inv Gain Fluence  Inv  Gain  Fluence  Inv  Gain 

1.44+13 0.00244 1.44+13 0.00209 
4.80+13 0.00477 4.80+13 0.00383 
1.47+14 0.00611 1.47+14 0.00513 
4.88+14 0.01323 4.88+14 0.01190 
1.04+15 0.02118 1.04+15 0.01891 
3.36+15 0.040 30 2.27+15 0.02819 

3.36+15  0.03825 
Undefined  Gains a t  the  Following  Fluences Were 

1.44+13 0.00164 
4.80+13 0.00299 
1.47+14 0.00434 
4.88+14 0.01042 
1.04+15 0.01757 
2.27+15 0.02642 
3.36+15 0.03657 

Not Plotted  2.27 + 15 

Figure 17: CHANGE I N  RECIPROCAL  OF  GAIN  VERSUS  FLUENCE  (2N1711) 
- (PHASE I DATA  EXTENSION) 
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Figure 18. Nonlinear Damage of Passive 2 ~ 1 6 1 3  T r a n s i s t o r s  



- 
where } IB is the sum of excess base c u r r e n t  components b u i l t   i n  by exposure 

t o   i o n i z i n g   r a d i a t i o n .  For two d i f f e r e n t  I values a t  a given 2 ,  t h e   r a t i o  

(i .e. ,   the  distance  between them on l o g  scale) is given by 

- X 

C 

Now the   ques t ion  is whether or n o t   t h i s   r a t i o   v a r i e s   w i t h   f l u e n c e ;   i f  i t  
remained  nearly  constant  then  the "1/% vs. $2 curves   wi th   d i f fe ren t  I 

values would be approximately paral le l  on a log-log  plot .  IC1/Ic2 is 

independent  of  fluence as well as t h e   r a t i o   o f   t h e   e x t r a   b a s e   c u r r e n t s ,   a t  

C 

l e a s t  when they  are  dominated by the  surface  components ,   s ince  the  ra t io  

depends  only  on V ' s  necessa ry   t o  get the   des i red  I values.  The e f f e c t   o f  

increas ing   the  number of   inte ' r face s ta tes  (AN ) with  dose  should  drop  out, 
BE C 

t 
s ince  both I and I are p r o p o r t i o n a l   t o  ANt. 

.X1 BX2 

Gain   p lo t ted  as a func t ion   of  IC b e f o r e   a n d   a f t e r   i r r a d i a t i o n  is 

shown i n   F i g u r e  19. The 2Nl7ll t r ans i s to r   da t a   g iven   i n   F igu re  19 a r e   f o r  a 

passive  exposure  to  Cobalt-60 p m m a  r ad ia t ion .  More enhanced damage t o  npn 

t r a n s i s t o r s  is observed when they are ope ra t ed   ac t ive ly   du r ing   i r r ad ia t ion  

(sect ion  2 .4) .  

I t  is a lso   impor tan t   to   cons ider  A $dhmi   a s  a func t ion  of IC s i n c e  

the re la t ive gain loss  is o f   i n t e r e s t   t o  a c i r cu i t   des igne r .  An example  of 

this   type  of  data is shown i n   t h e  computer p lo t   o f   F igure  20 f o r  a passive 

2Nll32. The f igure  expresses   the  fact ,   emphasized  throughout   the  report ,  that 

al though  nonl inear   gain  degradat ion is usua l ly  most s e v e r e   a t  low cu r ren t  

leve ls   never the less  i t  can be s i g n i f i c a n t   e v e n   a t   h i g h e r   c u r r e n t   v a l u e s .  

C h a r a c t e r i s t i c   p l o t s   o f   t h i s   t y p e  are similar fo r   bo th  2N1613 and a1132 t r a n s i s t o r s .  

Relat ive  gain l o s s  i n i t i a l l y   b u i l t   i n   r a p i d l y  a t  low cur ren t   then  as i t  begins 

to   s low down the   h igh   cu r ren t   l o s ses   acce le ra t e .  Thus t h e   s l o p e s  of 

p l o t s  do not  provide a convenient   func t iona l   re la t ionship   wi th  I C '  
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N P N  D i f fused   P l ana r   T rans i s to r  (2N1711) 
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Figure 19: DEPENDENCE OF GAIN  DEGRADATION  ON  COLLECTOR  CURRENT 
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2 5 2 5 l o3  2 5 2 5 10-1 
C o l l e c t o r   C u r r e n t   ( a m p e r e s )  

Change i n  DC Gain vs I Fami ly  of Fluences,   Type  2N1132,  No. 1 9 8  C ’  
S ymb o 1 Fluence  

>,C 0.00 
+ 2.35+11 
A 7.22+11 
0 1.58+12 
0 5.93+12 
A L.29+13 
X 6.81+13 
e 3.41+14 
v 2.38+15 

F igu re  20: DEPENDENCE OF RELATIVE  GAIN  LOSS ON COLLECTOR  CURRENT 
DURING  MEASUREMENT 
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The  most  meaningful way t o   p l o t  damage as a f u n c t i o n  of I f o r  

e m p i r i c a l   c h a r a c t e r i z a t i o n ,  is shown i n  the  computer  plot  of Figure 21. The 

func t iona l   r e l a t ion   be tween  & / h ,  and IC, sub jec t   t o   ce r t a in   a s sumpt ions ,  

is d e r i v e d   i n  Appendix I and is approximately  given by 

C' 

T h i s   r e l a t i o n  on a log- log   p lo t  would r e s u l t   i n   s t r a i g h t   l i n e s .   E x p e r i m e n t a l  

da t a  on p a s s i v e   t r a n s i s t o r s ,  a t  least  a t  low currents   and  exposures  where 

ion iza t ion   i nduced   su r f ace   e f f ec t s   domina te ,   d id   i n   gene ra l   exh ib i t   such  

s t r a i g h t  l i n e  p l o t s .  The slopes o f   t h e   l i n e s   f u r n i s h   t h e  llnlt values  which 

c a n   i d e n t i f y   t h e   s p a t i a l   o r i g i n  of  the  dominant  base  current  components a t  

d i f f e ren t   f l uences .  T h a t  method o f   a n a l y s i s  is a l s o   d i s c u s s e d   i n  Appendix I.  

I n   o r d e r   t o  show the Irn1l v a l u e   p r i o r   t o   i r r a d i a t i o n ,  a l/h vs. I l i n e  

is a l s o   i n c l u d e d  i n  Figure 21. From the   f l a tnes s   o f   t he  l/hFE l i n e  we s e e  

t h a t   i n i t i a u y  n =' 1.3 a t  IC = 10 pa and n 1.0 a t  20 ma. For t he  2N1613 

t r a n s i s t o r   s e e n   i n   F i g u r e  21,  .\(l/hm) d a t a   i n d i c a t e s  that a n  n value  of 

approximately 1.7 b u i l d s   i n   f o r  low exposures  and low cu r ren t .  From t h a t  n 

value  the  spacing  between  the I curves  of  Figure 18 can be accounted   for  

q u a n t i t a t i v e l y .  From Equation  (3) 

c 
i 

C 

and  with  an n value  of 1.7 f o r  2Nlb13 t r a n s i s t o r s  we f ind   fo r   t he   r a t io   o f  

c u r r e n t s  (- - - 10 pa 0.1 ma 1 ma 
100 pa' 1 ma ' 10 ma 1 t h a t  

Actually 
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8 -  
6 -  

-I 

L 
2 5 lo-3 2 5 2 5 1 0 - I  

C o l l e c t o r   C u r r e n t   ( a m p e r e s )  

Change i n  DC Gain vs I Family of F l u e n c e s  , Type  2N1613, No. 2 C ’  

Symbol F l u e n c e  
* 0.00 

A 7.22+11 
0 1.58+12 
0 5.93+12 
A 1.29+13 
X 6.81+13 
0 3.41+14 
v 2.38+15 (5.5 x 10 r a d  S i )  

+ 2.35+11  (5.53 x l o 3  rad S i )  

7 

Figure 21: DEPENDENCE  OF  NONLINEAR DAMAGE ON THE  COLLECTOR  CURRENT 
DURING MEASUREMENT ( F A I R C H I L D   2 N 1 6 1 3 - - - P A S S I V E )  
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where h is also a func t ion  of I Thus,  the  value  of  Equation ( 5 )  fits 

Figure 18 b e s t  a t  low currents  and  high  exposures where 
mi C' 

Eventually a t  high enough electron  exposure  the  dominate component  of 

n va lue   fo r   h igh   cu r ren t s   co r re sponds   t o  n = 1 typica l .of   d i sp lacement  damage 

in   the   bu lk   o f   the   base   reg ion .  The f luence a t  which this occurs   (n  = 1 i n  

Figure  21) is the  same as the   f luence  a t  which t h e   e l e c t r o n  damage of  Figure 18 
becomes " l inearf1.  N va lues   fo r   non l inea r  damage t o   p a s s i v e   t r a n s i s t o r s   v a r i e d  

from about 1 .4  t o  1.7, t yp ica l   o f   t ha t   expec ted   fo r   r ecombina t ion  a t  the   sur -  

face   o f   the  base-emitter junct ion  regions  (Ref .  3 ) .  I n   g e n e r a l ,   F a i r c h i l d  

t r a n s i s t o r s  had s t e e p e r  &l/$,) vs. I plots  than  Raytheon  devices,  i .e. ,  a 

s t r o n g e r  dependence  on I Raytheon 2N1132 and 2N1613 t r a n s i s t o r s  had n 

values  of approximately 1.5 whi le   Fa i rch i ld  a1613 a n d   a 1 1 3 2  had n values 

c l o s e r   t o  1.7 fo r   non l inea r  damage. Devices  from  both  manufacturers,  however, 

tended  toward n = 1 when displacement damage began t o  dominate. 

C 

C' 

R e s u l t s  f o r   n o n l i n e a r  damage caused by Cobalt-60  exposure  are shown 

i n  Figure  22  for 1/% versus I I t  should be noted   tha t  of  course  for low 

exposure 1/+, l /hmi  thus  the n va lue   fo r   s lope  is c l o s e   t o  n = 1. However 

a s   exposure   i nc reases   t o  1 x lo6 r ad   S i   t he  n value  approaches 1.7 t y p i c a l  o'f 

t he   e l ec t ron  example of  Figure 21. 

C '  

S i m i l a r   r e s u l t s  (n = 1.7) f o r  15 MeV proton damage a r e  shown f o r  

A ( l / h m )   i n   F i g u r e   2 3   f o r  a a1613 t r a n s i s t o r   i n   t h e  low exposure  region where 

nonl inear  damage dominates.  For  proton  induced  displacement damage,  from the 

review  of  devices  tested  in  phase I ( a s   s e e n   i n   s e c t i o n   2 . 5 ) ,   t h e   s l o p e   o f  

n(l/sE) vs.  I is p r a c t i c a l l y   z e r o   i n d i c a t i n g  a value  of n 2 1 as expected. C 
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COBALT-60 GAMMA RAYS 
@Before Exposure 

10-3 
COLLECTOR  CURRENT, IC, ( A M P E R E S )  

Figure 22. Dependence of N o n l i n e a r  Gamma Damage on Collector  Current During Measurement 
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Figure 23. Dependence of Nonlinear  Proton Damage on Collector  Current  During Measurement 



2.3.2 Statistical Spread 

For a c c u r a t e   p r e d i c t i n g   o f   t r a n s i s t o r  s i n  degradation due t o   i o n i z i n g  

i r r a d i a t i o n ,  one should   cons ider   the  statist ical  sp read   i n   r e sponse  among 

presumably  t5.dentica111  devices  during  identical  exposure  conditions.  Spread 

i n  gain  degradation is c l ea r ly   expec ted  among t r a n s i s t o r s ,   t h e   q u e s t i o n  is how 

much. I n i t i a l   s u r f a c e   c o n d i t i o n s  are cr i t ical  f o r   c o n t r o l l i n g   c e r t a i n   t r a n -  

s i s t o r  parameters and f o r   i n f l u e n c i n g   t h e i r   d e g r a d a t i o n  by su r face   i on iza t ion .  

More spec i f ica l ly ,   the   ox ida t ion   condi t ions   and   sur face   c leaning   techniques  

may determline not   on ly   the  low cu r ren t   va lues   o f   ga in   bu t   a l so   t he   deg rada t ion  

of   that   gain  with  exposure.   Al though  the  s i l icon  chips  are presumably  subjected 

t o   , l i d e n t i c a l q l   f a b r i c a t i o n   c o n d i t i o n s ,  i t  is n o t   p o s s i b l e   i n   p r a c t i c e   t o   a v o i d  

some s u b t l e   d i f f e r e n c e s   i n   p r o c e d u r e s   ( e  .g. due t o  small d i f f e r e n c e s   i n  sur- 

face   c leaning   s teps  by different   operators   during  assembly)   consequent ly   the 

su r face   cond i t ions   o f   t he   f i n i shed   t r ans i s to r s   can   d i f f e r   s l i gh t ly .  

In   o rde r   t o   de t e rmine   t he   s i ze   o f   t he   sp read   i n   t r ans i s to r   r e sponse  

dur ing   ident ica l   exposure ,  a s t a t i s t i c a l   s t u d y  was conducted on passive de- 

vices.  30 F a i r c h i l d   2 ~ 1 6 1 3 ,  30 Raytheon 2~161.3, 30 F a i r c h i l d  2Nll32 and 30 
Raytheon 2N1132 t r a n s i s t o r s  were tes ted ,   ac tua l ly   each   group of 30 came from 

t h r e e   d i f f e r e n t  date codes (10 dev ices   each ) .   Th i s   s e l ec t ion   o f   t r ans i s to r s  

allowed us to   observe   d i f fe rences  among devices  within a date code,  between 

date  codes,  and  between  manufacturers. The actual   date   codes  (year   and week) 

of  the  devices  used i n   t h e   s t a t i s t i c a l   s t u d y  are l i s t e d   i n   T a b l e  5 ,  and w i l l  

be r e f e r r e d   t o  by the  batch  designat ions  ass igned.  A l a rge   s e l ec t ion   o f   da t e  

codes was used  (1964 to   1967) .  I t  is impor tan t   to   no te   here   tha t   a l though 

some i n t e r e s t i n g   d i f f e r e n c e s  were observed,  devices  of  the same r e g i s t e r  

number but   dif ferent   batches  (even  between  different   manufacturers)   general ly  

showed similar s e n s i t i v i t y   t o   r a d i a t i o n .  

The r e su l t s   o f   t he   s tudy  are d i s p l a y e d   i n   t h r e e   d i f f e r e n t   f o r m s :  

hm vs. 9, " w \ T E i v s .  9 , and &/h, vs. 9. A l l  gain  values  shown i n  

Sect ion 2.3.2 refer t o  measurements a t  a co l l ec to r   cu r ren t   o f  10 pa i n   o r d e r  

t o  maximize d i f f e r e n c e s   i n  damage. In   each   f i gu re   t h ree   cu rves  will be  super- 

imposed.  Each  curve represents   the  mean value  of   the  par t icular   parameter  

taken   for  a given  batch (10 devices) .  The v e r t i c a l   b a r s   a c r o s s   t h e   c u r v e s  

represent   the   s tandard   devia t ions   for   the  10 devices. The curve   for   ba tch  #1 
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Table 5. Summary of Batch o r  Date Code Designations 

Passive  Devices 

2~1613  - NPN 

Batch 
Designation 

F1 

F2 

F3 

R 1  

R 2  

R 3  

Actual 
Date 
Code 

701 

552 

615 

446 

6545 

6625 

Device 
Number 

1 t h r u  10 

31- 40 

61- 70 

81- 90 

91-100 

101-110 

2N1132 - PNP 

Actual 
Batch 

Code Designation 
Date 

R1P 

621 F3P 

736 F2P 

721 F1P 

6649 R3P 

6710 R2P 

6523 

Device 
Number 

111-120 

141-150 

161-168 

189-198 

199-207 

208-218 

11111 I I .I 

48 



will be l e f t  i n  its o r i g i n a l   p o s i t i o n ,   t h e   o t h e r  two w i l l  be s h i f t e d   h o r i -  

z o n t a l l y   f o r   c l a r i t y  i n  o r d e r   t o   a v o i d   o v e r l a p   o f   t h e   @ b a r s .  The + vs. 9 
data  i l lustrate t h e  in i t ia l  ga in   d i s t r ibu t ions   w i th in   t he   ba t ches  as well as 

the   changes   o f   these   d i s t r ibu t ions   wi th   f luence .  The "wh vs. d a t a ,  

s ince   they  are , lnonnalizedff,  as w i l l  be  discussed in   Sec t ion   2 ,3 .3 ,  are well 

s u i t e d   t o  show up some i n h e r e n t   d i f f e r e n c e s   i n   s u r f a c e   c o n d i t i o n s  among the 

batches.   Without  such  differences  the  curves  should  overlap.  The &/h vs. 

3 da ta  show the   d i f fe rences  among the   ba tches  by using still  another   type  of 

normalizat ion as will a l s o  be   d i scussed   i n  2.3.3. 

Resul ts   in   terms  of   the  three  forms  of  data d i sp lay  are shown i n  

Figures  24 through 35. 2N1613 da ta  is shown i n   t h e   f i r s t   s i x   f i g u r e s ,  2N1132 

da ta   in   the   remainder .   In   each   case   the   Fa i rch i ld   devices  are compared with 

the  Raytheon  devices i n   p a i r s  of   f igures   for   each  damage form 

and k , ( l / h )   v e r s u s   f l u e n c e .  
%'*WhFE.  ' 

1 

The following  conclusions  can be  drawn  from the   f igures :  

i) Devices  within a given  batch: 

Devices, as a genera l   ru le ,   t ended   to   degrade   in  a very   s imi la r  

fash ion   wi th in  a given  batch.  Although  the  actual  values  of &/h, a t  given 

$ were somewhat d i f f e r e n t   f o r   d i f f e r e n t   d e v i c e s ,  as t h e   s i z e  of t he  d bar s  

t e s t i f i e s  (e.  g. Figures (28 ) and (29.1, the  shape  of  the  curves  for  the 

ind iv idua l   devices  were very similar s o  that a given  shape  could  almost  serve 

as a marker f o r  a l l  t h e   t r a n s i s t o r s   w i t h i n  a batch.  This will be emphasized 

more s t r o n g l y   i n   S e c t i o n  2.3.3. Similar  behavior  during  exposure  presumably 

r e s u l t s   i n   t h e   d e v i c e s   b e a r i n g   t h e  same date  code  because  they  were  fabricated 

toge the r  as a group, i .e . ,  condi t ions were f a i r l y   s i m i l a r   f o r  a l l  of them. A l -  

though t h i s  is probably  t rue i t  is necessar i ly   the   case  as discussions 

during a v i s i t  to   the  manufacturers   revealed.  Depending upon the number of 

devices  produced  within a p a r t i c u l a r  week, the  devices  having  the same da te  

code may or may not come from the same tl lotfl   (a  group  of  wafers  exposed  to 

iden t i ca l   d i f fus ion   and   ox ida t ion   cond i t ions  a t  the same time).  I f  only a 

r e l a t i v e l y  small number o f   t r a n s i s t o r s  were produced  then  they are l i k e l y   t o  

o r i g i n a t e  from the same lot.   Devices  with  the same date  code  although  coming 

PE 
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Figure 26: MEAN R E L A T I V E   G A I N  LOSS OF THREE  BATCHES OF P A S S I V E  
F A I R C H I L D  2N1613 TRANSISTORS 
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Change i n  DC Gain a t  0.01 m a  vs Fluence, Type 2N1613 Batch R1, R2,  R 3  

Figure 27: MEAN RELATIVE GAIN LOSS OF THREE BATCHES OF PASSIVE 
RAYTHEON 2N1613 TRANSISTORS 
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56 



l2 - 
9 -  
8 -  
7 -  
6 -  

5 -  

4 -  

3 -  

2 -  

l1 - 
9 -  
8 -  
7 -  
6 -  
5 -  

4 -  

3 -  

2 -  

lo- 
l l  .o ' 2 5 101'2 2 5 2 5 2 5 2 5 

F l u e n c e   ( E l e c t r o n s / c m  ) 2 

DC Gain a t  0 .01  ma vs F l u e n c e ,  Type 2N1132 Batch RlP,  R2P, R3P 

Figure 31: MEAN hFE OF  THREE  BATCHES  OF  PASSIVE  RAYTHEON  2N1132  TRANSISTORS 

57 

I 



n 

Fluence (Electrons/cm ) L 
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F i g u r e  32: MEAN R E L A T I V E   G A I N  LOSS OF THREE  BATCHES OF P A S S I V E   F A I R C H I L D  
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Figure 33: MEAN RELATIVE  GAIN LOSS OF THREE  BATCHES OF P A S S I V E  RAYTHEON 
2N1132 TRANS I STORS 

59 



Fluence  (Electrons/cm ) 
2 

Change in DC Gain at 0.01 ma vs Fluence,  Type  2N1132  Batch  FlP,  F2P, F3P 
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from d i f f e r e n t   l o t s   c o u l d ,   n e v e r t h e l e s s ,   e x p e r i e n c e  similar d i f f u s i o n ,  oxida- 

t ion   and   sur face   c leaning   procedures   wi th in  a week or so even  though  not 

e x a c t l y  a t  the  same time. To the  contrary,   devices   having  widely  different  

date  codes  (by a yea r  or more) ,   p robably   exper ience   s l igh t ly   d i f fe ren t  

f a b r i c a t i o n   c o n d i t i o n s  due to   cont inuous  improvement and  changes i n  tech- 

niques  (surface  c leaning!)   equipment ,   and  operators   during  that  time. 

i i )  Devices  from di f fe ren t   ba tches   o f   the  same manufacturer. 

Di f fe rences   in   device   response   dur ing   i r rad ia t ion   for   devices  from 

d i f f e ren t   ba t ches  is expec ted   e spec ia l ly   i f   t he   da t e   codes  are f a r   a p a r t .  Ex- 

pe r imen ta l ly ,   t h i s  was indeed  the  case.  By checking  the  date   codes  in   Table  5 
and  compar ing   the   curves   represent ing   separa te   ba tches   in   F igures  (24) - (351 
we observed  the  following: 

a )  NPN - Fa i rch i ld :  The mean  h cu rves   i n   F igu re  24 represent ing FE 
batches F2 and  F3  (only a few months a p a r t )  are f a i r ly   c lose   wh i l e   ba t ch  F1 
( l o w e r   i n i t i a l   g a i n )  is wel l   ou ts ide   the   s tandard   devica t ion  of t h e   f i r s t  two 

batches.   This   resul t   might  be expected on the  basis  of  the  date  codes.  When 

the   nonl inear  damage is p l o t t e d   i n  a normalized  fashion (n$,/h ) ,  then  the 

curves  of a l l  batches  superimpose as shown i n   F i g u r e  26 ,  However, the super- 

pos i t ion   o f   the   curves   in   t e rms  of the &/$ d a t a   i n   F i g u r e  (28) is not 

near ly  as good,  with F still ou t s ide   t he   s t anda rd   dev ia t ion   o f  F2 and F 

FE, 

E 

1 3- 
b) PNP - Fa i rch i ld :  The i n i t i a l   p o r t i o n   o f   t h e  mean h curves FE 

(Figure SO) r ep resen t ing  F1P and  F2P a r e   f a r  apart ( d i f f e r e n t   i n i t i a l   g a i n s )  

while F3P is c l o s e   t o  F2P. The superposi t ion  of   the  curves   in   terms  of   nor-  

malized form A h  &hm or   even  &/h (Figures  32 and 3 4 )  is good f o r  F1P FE 
and F2P (whose date  codes are very  c lose)   but  F3P which was manufactured a 

yea r  earlier has a d i f f e r e n t   s e n s i t i v i t y .  Some small bu t ’   s ign i f i can t   d i f -  

fe rences   p robably   ex is t   be tween   the   exac t   sur face   condi t ions   o f   t rans is tor  

batches  (FlP,  F2P)  and F3P. 

c )  NPN - Raytheon: I n i t i a l  mean gain  values   of   batches R1, R2, 

and R 3 ,  Figure 25, a r e   v e r y   c l o s e   i n   s p i t e  of about a y e a r ’ s   s e p a r a t i o n   i n  

each  of  the  date  codes. But t he i r   i r r ad ia t ion   r e sponses   a r e   w ide ly   d i f f e ren t  

both i n  terms of A h  &% (Figure 27.1, and  of &/% (Figure 29 ). I n t e r e s t -  

ingly  though, R1 and R2 remain f a i r l y   c l o s e   i n   t h e  damage curves  while  batch 

R 3  is much  more sens i t i ve   t o   r ad ia t ion   even   t hough  i t  has  the most recent   date  

code. 
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d) PNP - Raytheon: R1P and R3P curves  of mean hpE are c lose  

i n   F i g u r e  31 though the date  codes are q u i t e   d i f f e r e n t .  A l l  curves are 

f a i r l y   c l o s e ,  as expected, when the   nonl inear  damage is normalized  e i ther  

i n  terms of  wh, o r  f"/".. (Figures  33 and 35). However, the l a t e s t  

da t e  code R2P was more radiation sens i t i ve   and   o f t en   ou t s ide   t he   s t anda rd  

dev ia t ion   o f   t he   o the r  two batches.   This   indicates   that   the   surface  condi-  

t i ons   o f   t he   dev ices   i n   ba t ch  R2P are s i g n i f i c a n t l y   d i f f e r e n t   i n  some way 

wi th   r e spec t   t o   t he   o the r  two batches.  Discussions  with  the  manufacturer 

cou ld   no t   r evea l   t hose   f ab r i ca t ion   d i f f e rences ,   bu t   r evea led   t he   des i r ab i l i t y  

o f   i den t i f i ca t ion   o f   p rocess ing   fo r   co r re l a t ion   w i th   e f f ec t s   ( e i the r  by m i l .  

spec.   designat ion or c a p t i v e   l i n e )  on f u t u r e   r a d i a t i o n  tes t s .  

i i i )  Devices  of  the same r e g i s t e r  number from different   manufacturers  

( F a i r c h i l d  vs.  Raytheon) : 

Differences  in  device  response  during  exposure among devices  coming 

from two manufacturers   are  certainly expected.   There  of ten  are   construct ional  

d i f f e rences  between the  devices   and  surface  t reatments   can be e n t i r e l y   d i f f e r e n t  

( u s u a l l y   p r o p r i e t a r y   i n f o r m a t i o n )   i n   s p i t e   o f   t h e   f a c t   t h a t   t h e   d e v i c e s   a r e  

produced f o r   t h e  same f u n c t i o n   i n  a n  e l e c t r i c a l   c i r c u i t .  These f ac to r s   o f  

course  can  have a la rge   in f luence  on the   rad ia t ion   hardness  of  the  devices. 

I n   o r d e r   t o  be a b l e   t o   s e l e c t   t h e  most r e s i s t a n t   t r a n s i s t o r s   t o   a n   i o n i z i n g  

radiation  environment i t  is important   to   determine what  and how l a r g e   a r e  t h e  

d i f f e r e n c e s   i n   r a d i a t i o n   r e s p o n s e  between devices from di f fe ren t   manufac tumrs .  

The quan t i ty  A w h  was used  primarily f o r  comparing  the  devices  of  dif- 

f e r en t   manufac tu re r s   i n   o rde r   t o   no rma l i ze   aga ins t   d i f f e rences   i n   t he   emi t t e r -  

base  junction  perimeters  (see  Section 2.3.3). 

mi 

The foilowing  conclusions  can be drawn  from the   f igures :  

2N1613 - NPN 
Radia t ion   r e s i s t ance :   Fa i r ch i ld  F1, F2, F batches were grouped 3 

between  Raytheon  batches.  (See  the A h d h  cu rves   i n   F igu res  (26)  and (27). ) mi 
R1 and R2 were more res i s tan t   than   Fa i rch i ld   devices   whi le  R3 was  more s e n s i t i v e .  

S t a t i s t i c a l   s p r e a d :  The d i f f e ren t   Fa i r ch i ld   ba t ches  were much c l o s e r  

i n   ove ra l l   behav io r   t han   t he  Raytheon  ones. T h i s  was e s p e c i a l l y   t r u e   i n   t h e  awhi curves which is e q u i v a l e n t   t o   s a y i n g   t h a t   t h e r e  was a good c o r r e l a t i o n  

63 



between  ga in   loss   and   in i t ia l  gain for   the  Fairchi ld   devices   whereas   absent  

f o r   t h e  Raytheon  ones.   Consequently  the  prediction  of  the  gain  loss,  Dhm, 
or t h e   r e l a t i v e   g a i n  loss, 

but   no t   for   the   Raytheon  t rans is tors .  Also t h e   s t a t i s t i c a l   s p r e a d  among de- 

v ices   wi th in  a given  batch is much wider  for  the  Raytheon  devices  than  for 

t h e   F a i r c h i l d  as seen from t h e   s i z e   o f   t h e  d bars .  

W h F E n '  was poss ib l e   fo r   t he   Fa i r ch i ld   dev ices  

a1132 -, PNP 

Radia t ion   res i s tance :   Fa i rch i ld   ba tches  were  somewhat more 

resis tant   than  the  Raytheon  ones.   (See  Figures  ( 3 2 )  and ( 3 3 ) . )  

S t a t i s t i c a l   s p r e a d :  Raytheon  batches are s l i g h t l y   c l o s e r   t h a n   t h e  

Fairchild  ones,   al though  the  former  batches  cover  over 1% year  period  whereas 

the   l a t t e r   ones   cove r   abou t  a year.  The s tandard   devia t ion   bars   a re   approxi -  

mately  of  the same s ize   for   bo th   manufac turers .  The c o r r e l a t i o n  of the  gain 

i o s s  t o   t h e   i n i t i a l   g a i n   o r   e q u i v a l e n t l y   t h e   p r e d i c t a b i l i t y  of t h e   r e l a t i v e  

gain l o s s ,  Dhd$% was approximately  of  the same degree  for  each manu- 

fac turer .   (See   F igures  ( 3 2 )  and ( 3 3 )  o r   t h e  Rank Coef f i c i en t s  of Cor re l a t ion  

i n   S e c t i o n  2 .3 .3 .  

I n  summary of t h i s   s e c t i o n  we can  say that i n   o r d e r   t o   s e l e c t   t r a n s i s t o r s  

(given  type  and  manufacturer)  with  the least expec ted   sp read   i n   r ad ia t ion  

response  one  should  specify  not   only  that   the   devices   carry  the same date  code 

bu t   a l so   t ha t   t hey  come from the same l o t  of   Si   wafers .  As a compromise  one 

may s e t t l e   f o r   t h e  same d a t e  code  only,  although a somewhat h i g h e r   s t a t i s t i c a l  

spread is then  expected. 

Of cour se ,   s e l ec t ing   t he   pa r t i cu la r   manufac tu re r  is a l s o  a very  important 

problem s i n c e   t h e   s t a t i s t i c a l   s p r e a d   e v e n  among d i f fe ren t   ba tches   can  be s m a l l e r  

f o r  one manufacturer   than  that   wi thin one  batch from another  manufacturer.   This 

is a s t a t i s t i c a l   c o n s i d e r a t i o n   o n l y .  I t  says   no th ing   about   the   average   rad ia t ion  

hardness (i. e . ,   t h e   r a d i a t i o n   s e n s i t i v i t y )  of the  devices  coming  from d i f f e r e n t  

manufacturers  which  can b e  s i g n i f i c a n t l y   d i f f e r e n t .  

We wish t o  re-emphasize t h a t   t h i s   s t a t i s t i c a l   s t u d y  was c a r r i e d   o u t  on 

pass ive   t r ans i s to r s   on ly .   In   ac tua l   space   app l i ca t ions   t he   dev ices   a r e   o f t en   ac t ive  

during  exposure  and as shown i n   S e c t i o n  2.4 dmage is o f t e n   f a r  more severe ,   thus  

a similar s t a t i s t i c a l   s t u d y   c a r r i e d   o u t  on biased  devices would be h ighly   des i rab le .  

On the  basis   of   such a s tudy ,  a much b e t t e r   p r e d i c t i o n  of  the  expected  nonlinear 

gain  degradation would be poss ib l e .  
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2.3.3 Cor re l a t ions  arid Empirical  Formulation 

2.3.3.1 P r o p e r t i e s  of Formulations  Relating  Al/h,  and Dose 

Displacement damage o n   t r a n s i s t o r  gain is o f t e n   c a l l e d   l i n e a r  damage 

because  the  buildup of &/% is p r o p o r t i o n a l   t o   t h e   f l u e n c e ,  *. Surface 

damage on t r a n s i s t o r   g a i n  on t h e   o t h e r  hand is o f t en   ca l l ed   non l inea r  damage 

because  of  the  relation  between Al/% and 3 is n o t   l i n e a r  as observed i n  

Figure 16. O f  course ,   for   the   purpose   o f   p red ic t ing   ga in   degrada t ion   wi th  

dose, i t  is  of  fundamental  importance  to know what t h e   a c t u a l   r e l a t i o n  is. 

Is i t  a power law such as 

( a t  least be fo re   s a tu ra t ion ) ,  where m is a constant  and D is the  dose; o r  

perhaps   an   exponent ia l   re la t ion  

where a is a constant? I t  has   a l so  been  suggested  that  f o r  125 keV e l e c t r o n  

i r r a d i a t i o n  

where both K and 9 are   cons tan ts .  
0 

For two prac t ica l   reasons   there   has   been   no   theore t ica l   p red ic t ion  of 

t h e  l / h F E  vs .  D o r  9 r e l a t i o n .   F i r s t ,   t h e   e l e c t r i c   f i e l d   i n t e n s i t y  and i t s  

d is t r ibu t ion   wi th in   the   S i02   needs  t o  be known for   the   exac t   descr ip t ion   of  

the  charge  accumulation  with  dose. However, t h e   f r i n g i n g   f i e l d s   i n   t h e   v i c i n i t y  

of   the  junct ions  due  to   biases   are   not   very  amenable   to   theoret ical   analysis .  

Second, i t  is n o t   p o s s i b l e   t o   r e l a t e  l / hFE  d i r ec t ly   t o   exposure  phenomenon 

i n  a gene ra l  manner, s ince   ga in  changes  can be  a f f ec t ed  by both  the  bui ldup 

of   pos i t ive   space   charge   in   S i02  and the   c r ea t ion  of new i n t e r f a c e   s t a t e s .  

The relat ive  importance  of   these two e f f e c t s  is s t i l l  u n s e t t l e d  and probably 

depends on the   par t icu lar   exper imenta l   condi t ions .   In  any c a s e ,   t h e   t h e o r e t i c a l  
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pred ic t ion   o f   t he   bu i ldup   o f   i n t e r f ace  states with  dose is  s t i l l  missing,   as  

d i s c u s s e d   i n  Appendix I. Consequent ly ,   the   bui ldup  of   the  re la ted  quant i ty  

A l /hFE  wi th   dose   canno t   be   t heo re t i ca l ly   p red ic t ed   a t   p re sen t .  

As f a r  as the   empi r i ca l  form of   the  bui ldup is concerned, &/% 
vs. 9 curves from t h i s  program  showed a v a r i e t y  of   very  different   shapes 

depending  on  t ransis tor   types,   manufacturers ,   date   codes  and  biasing  condi-  

t i o m .  These r e s u l t s  have  been  summarized  from  Phase I and I1 work. 

The separa t ion   of   nonl inear  damage from  phase I displacement  curves 

for 10 d i f f e r e n t   t y p e s  of t r a n s i s t o r s   e x p o s e d   t o  0.5, 1.3, and 2.0 MeV 

e i e c t r o n   i r r a d i a t i o n s  were completed i n  phase 11. Figures  36 through 38 
show t h e   t y p i c a l   r e s u l t s  of t h i s   s e p a r a t i o n   o f  damage. In   F igu re  39 t r a n s i s t o r  

type 2Nll32 is cont ras ted   wi th   type  a2219 i n   t y p i f y i n g  two t r a n s i s t o r   t y p e s  

which  have d i f f e r e n t   s e n s i t i v i t i e s  t o  nonl inear  damage. The h o r i z o n t a l   a x i s  

of  Figure 39 is shown i n   u n i t s  of   absorbed  dose,   rads(Si) ,  which  would a l low 

u s  to   superimpose  the  data   corresponding t o  d i f f e r e n t   e l e c t r o n   e n e r g i e s   i f   t h e  

non l inea r  damage is p r imar i ly  due t o   i o n i z a t i o n   e f f e c t s .  Two s e t s   o f   d a t a  a t  

one   energy   s ign i fy   the   d i f fe rence   in   response   be tween  d i f fe ren t   spec ies   o f  

i d e n t i c a l   t r a n s i s t o r s  exposed t o   t h e  same i r r a d i a t i o n .  The spread  between 

these   po in ts  is about  the same as t h a t  between poin ts   cor responding   to   d i f -  

f e r en t   ene rg ie s ;  i .e . ,  wi th in   the  limits o f   e r r o r ,  a l l  the   da ta   for   the   th ree  

energies  superimpose.  The shapes  of   these  curves   are   not   wel l  enough  -defined 

t o   r e n d e r  them u s e f u l   f o r  more d e t a i l e d   a n a l y s i s   s i n c e   t h e   e a r l i e r   e x p e r i m e n t s  

furn ish ing   these   da ta  (NAS 5-9578) were des igned   t o   s tudy   l i nea r   r a the r   t han  

nonl inear  damage. 

Examples of degrada t ion   resu l t ing  from the 1 MeV e l e c t r o n  t e s t  

a r e  summarized i n   F i g u r e s  40 through 44 i n   t h r e e   d i f f e r e n t   g r a p h i c a l  forms. 

Most of our dev ices   a r e   r ep resen ted   i n   t hese   f i gu res .   S ince   t he   Fa i r ch i ld  

S e r i e s  500 T r a n s i s t o r  Tester programs I ins t ead   o f  IE and  gain is measured C 
as Ic/IB data  curves shown are f o r  a family  of I va lues .   Correc t ions   for   the  

leakage   cur ren t ,  Icm, (see  Equat ion A 1  Jf  Appendix I )  made very l i t t l e  d i f -  

f e r e n c e   i n  our data .  

C 

The f luence   va lues ,  shown i n   t h e s e   f i g u r e s ,   c a n   e a s i l y  be conver ted   in to  

dose i f   d e s i r e d ,  by d iv id ing   wi th  a convers ion   fac tor  of 4.24 x 10 . T h a t  is 

t o   s a y  

7 
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Figure 36. Nonlinear Damage in Transistors, as Separated From Total Damage, 
After 0.5 Mev Electron Irradiation (Extended Phase I) 
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Fluence  (Electrons/cm ) 2 

DC  Gain vs Fluence,  Family of Collector  Currents,  Type 2N1613, No. 2 

Figure 40: DEPENDENCE  OF  NONLINEAR DAMAGE ON INJECTION  LEVEL  DURING  MEASUREMENTS 
I N  PARAMETRIC FORM ( F A I R C H I L D   2 N 1 6 1 3 ,   P A S S I V E ,  ONE BATCH;  MEASUREMENT 
CURRENTS FROM TOP  TO  BOTTOM: 10-30-100-300 pa ,  1-3-10-20-40 ma) 
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Fluence  (Electrons/cm ) 
L 

DC Gain vs Fluence, Family of Collector  Currents, Type 2N1613, No. 82 

F i g u r e  41: DEPENDENCE ON NONLINEAR DAMAGE ON THE  INJECTION  LEVEL  DURING  MEASURE- 
MENTS I N  PARAMETRIC FORM (RAYTHEON 2N1613 PASSIVE,  ONE BATCH;  MEASURE- 
MENT  CURRENTS  FROM  TOP  TO  BOTTOM: 10-30-100-300 u a ,  1-3-10-20-40 ma) 
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10 l6  

Fluence  (Electrons/cm ) 

DC Gain vs Fluence,  Family of Col lec tor   Curren ts ,  Type 2N1132, No. 146 

2 

F i g u r e  42: DEPENDENCE OF  NONLINEAR DAMAGE ON THE  INJECTION  LEVEL  DURING MEASUREMENTS 
I N  PARAMETRIC FORM (RAYTHEON  2N1132,  PASSIVE,  THREE  BATCHES;  YEASUREMENT 
CURRENTS FROM TOP TO B O T l O Y :  10-30-100 p a ;  1-3-10-20-40 ma) 
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DC Gain vs Fluence,  Family of Col lec tor   Curren ts ,  Type 2N1132, No. 198 

Figure 43: DEPENDENCE  OF  NONLINEAR DAMAGE ON THE  INJECTION  LEVEL  DURING MEASUREMENTS 
I N  PARAMETRIC FORM ( F A I R C H I L D   2 N 1 1 3 2 ,   P A S S I V E ,   P A R T  OF TWO BATCHES--- 
SEE  TEXT;  MEASUREMENT  CURRENTS FROM TOP  TO  BOTTOM: 10-30-100-300 ua, 
1-3-10-20-40 ma) 
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loo G- 

DC Gain vs Fluence,  Family of Col lec tor   Curren ts ,  Type 2N1132, No. 215 

6 

F igure 44: DEPENDENCE  OF  NONLINEAR DAMAGE ON T H E   I N J E C T I O N   L E V E L   D U R I N G  MEASUREMENTS 
I N  PARAMETRIC FORM ( F A I R C H I L D  2N1132, PASSIVE,  ONE BATCH;  MEASUREMENT 
CURRENTS FROM TOP TO  BOTTOM: 10-30-100-300 ua , 1-3-10-20-40 ma) 
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I I I I1 Ill I I I I I I I I I II 1111 11111111111 I 

Fluence (1 MeV elect-?og/crn ) 2 

4.24 x lo7 k a d s ( s i )  x cm ] 2 -1 Dose ( r a d s ( S i ) )  = 

Note tha t   the   quoted   f luence   va lues  on all f i g u r e s  are determined a t  t h e  

S i  chip  and  not  that i n c i d e n t  on the   t rans is tor   can .   Transmiss ion   losses  

s u f f e r e d  by t h e   e l e c t r o n  beam  when t ravers ing   the   can  were taken  into  ac-  

count. I n  t h i s  way one is a b l e   t o   b e t t e r  compare the   i r rad ia t ion   response  

of   devices  coming  from di f fe ren t   manufac turers   and   having   d i f fe ren t   can  

thicknesses.  

On a p l o t  of  the  type A( l / h )  v s .   f o r  a family  of I the  'Inon- C 
l inear i ty , '   of   the   gain  degradat ion  induced by s u r f a c e   e f f e c t s  is very 

apparent.  The dependence  of  gain  degradation on the   measur ing   cur ren t   (as  

d i s c u s s e d   i n   s e c t i o n  2.3.1) is ind ica t ed   g raph ica l ly  by a family  of  curves 

f o r   n i n e   d i f f e r e n t  I values.   These  curves  are almoE/t p a r a l l e l   t o   e a c h   o t h e r  

and  except   for   the  very  high  current   values ,   near ly   equal ly   spaced.   This  

means, t h a t  a t  least  f o r   t h i s   t y p e   o f  a p l o t ,  measurements made a t  a small 

number of   cur ren ts  would be s u f f i c i e n t   t o   c h a r a c t e r i z e   t h e  I dependence 

and enable one to   p red ic t   t he   cu rve  a t  intermediate  I values.  

C 

C 
C 

Figures  40 through 44 comprise a s e t  showing  the  var ie ty   of   dif ferent  

shapes  of  the &/hm vs. + curves,   obtained  under  passive  exposure.   This 

r ep resen ta t ion  by typ ica l   curves  is poss ib le   s ince   devices   wi th in  a given 

da te  code  generally  had  very similar curves  hence one f i g u r e  shown can 

r ep resen t   t he   r e s t ,   and  sometimes  one  device  can  represent a l l  the  devices 

from s e v e r a l  date codes.  Table 6 summarizes w h a t  f i g u r e  is representa t ive   o f  

d e v i c e s   i n  a given  batch o r  batches.  Of par t icular   importance is the   f ac t  

tha t   the   genera l   shapes   o f   the   curves   vary   s ign i f icant ly   (para l le l ,   concave ,  

convex)  and  consequently  the  slopes  of &/h vs. tS curves  are   not  a constant .  

Thus, none of   the   th ree   formula t ions   for  &/+ given   in   Equat ions  8 through 

10 can  adequately  serve as an   empir ica l   equa t ion   for   nonl inear  damage. 

m 
E 

As shown i n   t h e   f i g u r e s ,   t h e  I dependence  of  the  gain  degradation, C 
however,  does seem t o  be similar f o r  a l l  t he   dev ices   r ep resen ted ,   i n   sp i t e   o f  

t he   d i f f e rences   i n   t he   g raph ica l   shapes  of  the &/h vs. e p l o t s   ( s e e  

s e c t i o n  2.3.1). This  is not   the   case   though  for   ac t ive  NPN devices where  de- 

pendence on I a p p e a r s   t o   a l s o  be a func t ion   of  +. A tremendous d i f f e r e n c e   i n  

FE 

C 
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t h e  &L/h VB. 9 CUNOS observed   for   pass ive   and   ac t ive  NPN devices   s ign i fy  

t h e   d r a s t i c   e f f e c t  of t he   ac t ive   b i a s   du r ing   exposure   i n   enhanc ing   non l inea r  

gain  degradation  and will be d i e c u s s e d   i n   s e c t i o n  2.4. 

Table 6. Descr ipt ion of Passive  Device Groups Represented i n   F i g u r e s  40-44 

~ . ~~ 

Figure  Device Number of Corresponding 
Date Codes No. of  Devices 
Represented (10 dev./code) 

NO. No. Type Manufacturer 

40 2 

(S imi la r   to   F ig .  
40 b u t   l e s s  d a m -  
age) 

4 1  82 

( S i m i l a r   t o   F i g .  
42 but   g rea te r  
spread I ) C 

42  146 

43 '198 

(Simi la r   to   F ig .  
42 l e s s  damage 
and more concave) 

44 215 

2N1613 F a i r c h i l d  2 
NPN 

a 1 6 1 3  Raytheon 1 
N P N  

2N1613 Raytheon 2 
NPN 

10 

20 

10 

20 

2Nll32 Raytheon 3 
PNP 

a l l 3 2  F a i r c h i l d  
PNP 

2N1132 F a i r c h i l d  
PNP 

Z N l l 3 2  F a i r c h i l d  1 
PNP 

30 

10 
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A simple power law of   the  form of Equation 8 where x < 1, was shown 

i n  Figure 43. About 30 F a i r c h i l d  transistors ou t   o f   ove r  200 t r a n s i s t o r s  

t e s t e d   d i d   s a t i s f y  this r e l a t i o n .  Our main  conclusion is t h a t  i t  is dif- 

f i c u l t   t o  make a s p e c i f i c  statement about   the  shape6  of   the dl/% vs. dj 

curves,   except  perhaps  emphasizing  their  wide va r i e ty .  We would l i k e  t o  
s t r e s s   t h i s  last  poin t   very   s t rongly   s ince  i t  has  been  claimed  (Ref. 5 )  
that the  bui ldup  of   nonl inear  damage wi th   f luence   in   dose   can  be a p p r o e -  

mated by 

0' = cons tan t  Q 
X 

hFE 
O < x < l  

Indeed some of   our   passive  devices   did obey th i s   s imp le   r e l a t ion .   Bu t  not 
a l l  of them. I n   f a c t ,  most  of them did  not .  Of course,   within a small 

dose  range many of the  &/& vs. 0 curves  can  be  approximated by a simple 

power law. However, th i s   approximat ion  fa i l s  when the  whole dose  range, 

below damage s a t u r a t i o n ,  is considered. The second  point is t h a t   i n   t h e  

proposed  power law representa t ion   of   the   nonl inear  damage with  dose,   the  

exponent,  x, is c la imed  to  be always less o r  a t  most e q u a l   t o  1. I n  o u r  

experiments,  most  of  the  active NPN t r a n s i s t o r s   e x h i b i t e d   f a s t e r   t h a n   l i n e a r  

rise ( x  > 1) i n   p a r t   o f   t h e  & / h ,  vs. 9 p l o t s   ( s e e   s e c t i o n  2.4). This  

means,  of  course,  that i n   t r y i n g   t o   p r e d i c t   n o n l i n e a r  damage f o r   s u c h  de- 

v i c e s ,   i n  a given  mission,  with a l e s s   t h a n   l i n e a r  power law, will badly 

underestimate  the  expected  gain  degradation. Due t o   t h e  great importance 

of such   pred ic t ion   problems,   fur ther   s tudy  would  be c l e a r l y   j u s t i f i e d   t o  

c lear  up the  discrepancies  j u s t  d i scussed .   ( In t e re s t ing ly  enough,  there 

appeared   to  be a s l i g h t   v o l t a g e  dependence  of the   exponent ,   x ,   be ing   less  

than 1 or e q u a l   t o  1 a t  the  lower  collector-base  voltages.  I t  is i n t r i g u i n g  

to   specu la t e   t ha t   t he   va lue   o f   x ,   fo r   wha teve r   t he  power law approAmation is 

worth, is dependent   not   only  on  device  s t ructure   and  processing  var iables ,  

b u t   a l s o  on the   app l i ed   ac t ive   b i a s ing   cond i t ions .  Note t h a t   i n   R e f e r e n c e  5 
x is not assumed t o  be dependent  on  biasing,  the  authors  simply  increase  the 

su r face  damage constant ,  ks, to   account   for   h igher   ga in   degrada t ion   of  

t r a n s i s t o r s   w i t h  a reverse  biased C-B junction.)  
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2.3.3.2 Cor re l a t ion   S tud ie s  and the  AWh Formulation 
i 

In t r y i n g  t o  pmdict the response of b i p o l a r   t r a n s i s t o r s   t o   i o n i z i n g  

i r r a d i a t i o n  i t  would be of cons iderable   he lp  i f  cor re la t ions   be tween initial 
parameters  and gain degradat ion  could  be  found.   Thus,   correlat ion  s tudies  

were conducted as summarized i n  Table 7. Parameters i n   q u e s t i o n  are l is ted 

as well as the   degree   o f   cor re la t ion   expressed   in  term of  the Rank coe f f i -  

c i e n t s .  

As shown i n  Table 7 and i n  Figures 45 and 46, good c o r r e l a t i o n  was 

found  only i n  one case, namely  between  the gain l o s s  a h  and  the initial 
gain . Similar c o r r e l a t i o n s  were s t u d i e d   i n   a n  earlier c o n t r a c t  with 

the  Naval  Radiological Defense Laboratory (Ref .  6 ) .  The  word "correlat ion" 

is used i n  this r e p o r t ,   i n   t h e   c o n t e x t  now described. 

i 

If ~ X B =  is defined as t h e  sum of the extra base  current  components 

introduced by i o n i z i n g   i r r a d i a t i o n  so t h a t  

then 

and 

* K  where K 
i 

1 
I 

1+- BO 

=B X 

T h i s  equat ion   appl ies   to   each   device   separa te ly   and  

d i f f e r e n t  for d e v i c e s   a s   t h e i r  in i t ia l  g a i n s   a r e   d i f f e r e n t  

K values  could be 

(excepting  of  course 

the  very high dose case where Ksz l   fo r  a l l  of  them s i n c e  1 1 ~ ~  >> IBo).  In- 

t e r e s t i n g l y   e n o u g h ,   i n   c e r t a i n   c a s e s  K t u r n s   o u t   t o  be approximately  constant 

among devices,   even a t  low  exposures  (Figures 45 and  46). I n   o t h e r  words,  the 

r e l a t i v e   g a i n  loss is approximately  constant  among devices   regard less  of t h e  
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Table 7. RANK CORRELATION COEFFICIENTS 

03 
0 

Initial Parameter 

pipel Parameter 

- PNP 

dl PNP pairchi ld,  unbiased 

-82 9 95 .46 "63 

.a -89 -22 -.st 

.44 -47 -07 -.a 

.n -83 -07 -46 
0 5 2  -81 .01 -33 

-44 *92 .4r *05 

-.k2 "45 -.06 - .16 
-34 -02 -.26 ";so 

0 3 7  -2 -29 -08 



5 

4 
Kl 
E 

0 
rl 

c J d 3  
5 v )  

m 9  

3 8  

7 

v) 

6 

*e 

em 
e 

e 

e -  

e 

e 
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Figure 45: CORRELATION OF GAIN LOSS IUTH INITIAL  GAIN  (2N1613) 
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Figure 46: CORRELATION OF GAIN  LOSS  WITH  INITIAL  GAIN  (2N1132) 
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f’ 

i n i t i a l  gains. This  last sentence seem8 t o  imply that a l lnonnal ivl t ionfl   of  

the  ga in  deg rada t ion   o f   t he   d i f f e ren t   dev ices   t akes   p l ace  when the  results 
are compared i n  terms of w h m i .  Whether t h i s  is indeed  the  case,  is 
still s u b j e c t  t o  discussion4 

Cer ta in ly  A l /hm  appears   to   be  a good func t iona l  form f o r   g a i n  loss  f o r  

some comparison  purposes  since i t  is equ iva len t   t o  1 IB /Ic, and 2 IB is a 

d i r e c t  measure of r a d i a t i o n   s e n s i t i v i t y   o f   t h e   d e v i c e .  However, when the  devices  

t o   b e  compared have   d i f fe ren t   geometr ies ,   e .g . ,  coming  from separate   manufacturers ,  

i t  would  appear   that   the   quant i ty  1 I /Ic ought t o   b e   m o d i f i e d   i n   o r d e r   t o  normal- 

i z e   t h e   d e v i c e s   t o   t h e  same geometrical  dimensions. It appears   that  an expression 

l i k e  IB / I B  would be   appropr i a t e   s ince   t hen   t he   d i f f e ren t   geomet r i ca l   f ac to r s  

should  drop  out.   (E.g. ,   the  lengths of the  emit ter-base  junct ion  per imeters .  

The previous  s ta tement  is s t r i c t l y   c o r r e c t   i f   b o t h  IB and 1 1~~ are  dominated 

by the  same base  current  component. This i s ,  however, u s u a l l y  the  case ;in p r a c t i c e ,  

because  of  the  domfnant r o l e  of t he   su r f ace  component i n   non l inea r  damage.) 

Actual ly  any expression  involving ZIB,/IB, would b e  equal ly  good, e .g . ,  t h e   r e l -  

a t ive  gain  remaining 

X X 

BX 

x 0  

0 

Note  however, that i t  is just as wrong no t   t o   no rma l i ze   aga ins t   ce r t a in  

p e r t i n e n t   f a c t o r s  as to   no rma l i ze   aga ins t   o the r s  which  have noth ing   to  do with 

the   resu l tan t   ga in   degrada t ion .   Therefore  we propose  that  i f   t h e r e  is no cor- 

r e l a t i o n  between IB and rIBx (i.e.,  between h m  and  &/hm),  then  the com- 

par i son  of presumably ident ica l   devices   should  be  done i n  terms  of  &L/hm, 

whereas  the  comparison  of  others  with known geometr ica l   d i f fe rences   should  be 

done i n  tenus  of &&hmi. On the   o the r  hand, i f   c o r r e l a t i o n  between 1~~ 

and TIB, do exis t   then  the  cornparison  of   devices   in   terms  of   bh&hm  should 

always be s u p e r i o r   t o  that i n  terms of  &hm. An example  of  such  correlations 

is shown i n   F i g u r e  47 f o r  a moderate  exposure  of 5 x 10 R. Furthermore i n  many 

of  our  experiments  the  quantity  &&hm seemed t o   g i v e  a be t t e r   no rma l i za t ion  
i 

of   the  gain  degradat ion.  Data on statist ical  spread  from s e c t i o n  2.3.2 i l l u s t r a t e d  

advantages of us ing   the  form &&hm i n  o rde r   t o   r educe   t he   s t anda rd   dev ia t ion  

0 i 

i 

4 

0 
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betweon transistor groups  of  the MIP. or di f fe ren t   da te   codes .   Needless  t o  

say  the  problem merits f u r t h e r   c o n e i d e n t i o n .   I n   p a r t i c u l a r ,  a thorough 

experimental   s tudy  of   correlat ion  problem is s o r e l y  needed. 

2.3.3.3 Empirical  Formulation  Equations 

An empir ical   formulat ion  of  relative gain l o s s  was developed t o  fit  
experimental  resilts of  the  dependence on total   absorbed  dose.   Relat ive  gain 

l o s s  was choaen on the   bas i s   o f :   1 )   observed   cor re la t ions   be tween IBo and 

1 1 ~ ~ ;  2) nor tna l i zn t ion   o f   s t a t i s t i ca l   sp read  i n  t h e   s e n s i t i v i t y   o f   t r a n s i s t o r s  

from the same or d i f f e r e n t   b a t c h e s ;   a n d   3 )   t h e   d e s i r a b i l i t y   f o r   u s i n g  a form 

convenient  for  design  engineers.   Plots  of  the  dependence  of 

f luence were shown i n   F i g u r e s  26, 27, 32,  and 33. Re la t ive   ga in   l o s s  by its 

nature  as a f r a c t i o n a l  change m u s t  vary from 0 for no damage t o  1 as a maximum 

of damage. Thua w h m .  p l o t t e d  against dose  on a log p l o t  m u s t  have  the 

general  fonn of a hyperbolic  tangent which  approaches 0 and 1 asymptot ical ly  

a t  0 and 00 exposure  respect ively.  Curve f i t t i n g   t o  a hyperbolic  tangent re- 

vealed  that   Equation 17 represented a r e a s o n a b l y   c o n s i s t e n t   f i t  of the  data  

ava i l ab le .  

w % E i o n  

1 

Figure k8 shows how t h i s  f u n c t i o n a l   r e l a t i o n   f i t s   t h e  mean values  of 

data on 30  passive  2Nll32  Raytheon  transistors  measured a t  10 ua c o l l e c t o r  

cu r ren t .   I n   gene ra l  a l l  o f   t he   o the r   t r ans i s to r  groups t e s t e d   f i t t e d  Equa- 

t i o n  17 with a power law dependence  on  dose  given by q 0.4 

tanh [K D l o e 4  
Not a l l  pass ive   t r ans i s to r   t ypes   s a tu ra t ed  a t  m a x i m u m  r e l a t i v e  gain lo s ses  

when w h m i  Thue a s a t u r a t i o n   f a c t o r ,  f,, was used  to  multiple 

Equation 18. 

AhF.F/hFEi N = fa  tanh Dloo4 = fs  tanh K' D 0.4 
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Figure 48. Empirical  Formulation  for Nonlinear Damage (2N1132) 



Tablo 8. Dama#p Constants for a Hyperbolic 
Tangent mpirical Fit for Hean Relative Gain L o s s  ( a t  IC = 10 pmp) 

An example  of a f i t   f o r  a t r a n s i s t o r   c o n d i t i o n  where damage s a t u r a t e s  a t  

f = 0.75 is shown i n  Figure 49. T h a t  da ta  was p l o t t e d  for a c o l l e c t o r   c u r -  

r e n t  of 0.1 ma. The  dependence  of damage on c o l l e c t o r   c u r r e n t  was discussed 

i n   s e c t i o n  2.3.1. Since  only two t r a n s i s t o r   t y p e s  were s tud ied  for empir ica l  

f i t t i n g  no profound  genera l iza t ion   of   the   appl icabi l i ty   o f   Equat ion  19 t o  

other   device  types is claimed a t  th i s   t ime.  However, a t  l e a s t   v a r i a t i o n s  of 

t h i s  form  of  equation  look  promising  for  expressing  the  nonlinear damage 

buildup  with  dose. 

6 

2.3.4 Ioniza t ion   Equiva lence   for   Pass ive   Trans is tors  

The apparent   rad ia t ion   equiva lence   for   nonl inear  damage based  on t o t a l  

absorbed  dose from the   i on iza t ion  phenomenon was d e s c r i b e d   i n   e a r l y   p a p e r s  

(Ref. 7 and 8) and   t he   f i na l   r epor t  of  phase I work under   contract  NAS5-9578 
(Ref. 2).  T h a t  data i n c l u d e d   r e s u l t s  from  X-ray, gamma r a y ,  e lec t ron ,   and  

p re l imina ry   p ro ton   t e s t s .  Those  f indings  indicated  an  independence  of non- 

l i n e a r  damage on par t ic le   type   o r   energy   and   on ly  a dependence on t h e   t o t a l  

dose  absorbed a t  t h e   t r a n s i s t o r   s u r f a c e .  The phase I1 t e s t   r e s u l t s   v e r i f y  

i n   p a r t   t h o s e   e a r l i e r   f i n d i n g s  . Figure 50 shows a comparison  between 

damage t o   p a s s i v e  2N1613 t r a n s i s t o r s   c a u s e d  by Cobalt-60 gamma ray  exposure 

(Ref. 9) and  phase I1 1 MeV e lec t ron   exposure . .   Co l l ec to r   cu r ren t   l eve l s  
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shown are at 10 pa, 0.1, 1.0, and 10 ma. Figure 51 illustrates comparable 

damage t o   p a s s i v e  pnp   2Nl l32   t rans is tors  for t he   p re sen t  1 MeV e lec t ron   and  

15 MeV pro ton   t e s t s .  

An anomalous except ion t o  t h e   t o t a l  dose  equivalence  concept for pas- 

s i v e   t r a n s i s t o r s  was observed for 15 MeV proton damage to npn  2N1613 

t r a n s i s t o r s .   I n  that c a s e ,   d e s c r i b e d   i n   d e t a i l  i n  s e c t i o n  2.5, more severe 

damage was observed a t  l o w e r   t o t a l  dose for protons  than for  any  other   type 

of r a d i a t i o n   a n d   s a t u r a t i o n  of the damage was not   evident   except  a t  very 

high  exposures. The ionizat ion  equivalence  concept   does  not   appear   to   hold 

f o r  a c t i v e   t r a n s i s t o r s   e i t h e r  as d e s c r i b e d   i n  more d e t a i l   i n   s e c t i o n  2.4. 
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2.3.5 Explorat ion o f  the Source. of Nonlinear Damage 

A t  t h i s   p o i n t  reference t o  Appendix I would be   appropr ia te  i n  o rde r  

to   rev iew  the   theore t ica l   background  (References  10 - 18) f o r   o u r   f u r t h e r  

s t u d i e s  on the   source   o f   nonl inear  damage. Most of t h e   d a t a   d i s c u s s e d   i n  

t h i s   s e c t i o n  was generated  from  the special measurements  discussed i n  Sec- 

t i o n  2.1.3.2  and l i s t e d   i n   T a b l e  3. Damage tQ t r a n s i s t o r s  exposed  both 

passively and  under ac t ive   b ias   dur ing   exposure  will be   cons ide red   i n   t h i s  

sec t ion .   For   an   overa l l   t rea tment   o f   ac t ive   b ias  damage see Sec t ion  2.4. 
Typical  examples  on  the  interpretation  of  these  measurements  are  given be- 

low for se l ec t ed   dev ices  where  each  device is a r ep resen ta t ive   o f  a small 

group. The devices   d i scussed   a re  good r e p r e s e n t a t i v e s  of the   four  main 

groups of t ransis tors   used  in   our   experiment   namely,   the   passive and a c t i v e  

NPN's and PNP's. A t  l e a s t ,   t h e  measurements  which  were common t o  a l l  t r an -  

s i s t o r s   ( h  

the   conclus ions  drawn shou ld   e s sen t i a l ly   app ly   t o   t he   pa r t i cu la r   g roup  con- 

t a i n i n g   t h e   d e v i c e   i n   q u e s t i o n .  

FE' 'EBO' %BO ) seem to   bear   th i s   assumpt ion   ou t .   Consequent ly  

The measurements w i l l  be i n t e r p r e t e d  on t h e   b a s i s   o f   t h e   t h e o r e t i c a l  

d i scuss ion   g iven   i n  Appendix I s ince   t he   da t a   a r e   ana lyzed   i n   t e rms   o f   t he  

effect   of   the   charge  accumulat ion and of t he   c r ea t ion   o f   t he  new i n t e r f a c e  

states on t h e   S i   s u r f a c e  where   poss ib le .   S ince   the   e f fec t   o f   the   charge  

accumulation is d i f f e ren t   i n   t he   p re sence   o r   absence   o f   i nve r s ion ,  we will 

always start the   d i scuss ion   o f   t he   f i gu res   w i th   t he  C BE vs .  fluence  measure- 

ments. mese   curves   can  t e l l  u s  immediately  whether or no t   i nve r s ion   has  

taken  place.   Conclusions drawn then  can be s u b s t a n t i a t e d  by o t h e r  measure- 

ments. 

In   discussing  parameters   such as I B, IR, hm,  which are a f f e c t e d  by 

both  charge  accumulation  and  the  creation  of new i n t e r f a c e   s t a t e s ,  we have t o  

be  content  with  considering  only  the combined e f f e c t s  of  t hese  two  phenomenon 

s i n c e  on t h e   b a s i s   o f  our measurements t h e i r   e f f e c t s   c a n n o t  be  separated.  One 

can   never the less  draw some ind i r ec t   conc lus ions   abou t   t he i r   r e l a t ive   impor t ance  

under ce r t a in   cond i t ions .  Gain d e g r a d a t i o n   i n   t h i s   s e c t i o n  w i l l  be expres sed   i n  

terms of A l/hFE  vs. 8 curves.  The pros  and  cons  of  different  methods  of  pre- 

sen t ing   ga in   degrada t ion   da ta  was d i s c u s s e d   i n   S e c t i o n  2.3.3. 
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NPN-unbiased du r ing   i r r ad ia t ion :  As discussed (Appen. I) it is the  p type 

base which is a f f e c t e d   p i m a r i l y  by the  posit ive  charge  accumulation  and  the 

new i n t e r f a c e   s t a t e s ,   t h u s   l e a d s  t o  t r ans i s to r   deg rada t ion  i n  an NPN 

s t r u c t u r e .  

The CBE and Cw: v s . 0   c u r v e s   a r e  shown i n   F i g u r e  52 f o r   F a i r c h i l d  

2 ~ 1 6 1 3 ,   d e v i c e  #l. F o r   p a s s i v e   2 ~ 1 6 1 3   t r a n s i s t o r s   t h e r e  was no ind ica t ion   o f  

any inversion  of  the  base  surface  due  to  the  accumulated  charge  since C and 

CBc remained  approximately  constant. The absence  of  inversion is a l s o  sup- 

ported by t h e  I vs. VBE curves   of  the type shown i n   F i g u r e  53 where the  

s l o p e s   y i e l d  n values  C - 1.9 (n  comes  from Equation A? of  Appendix I). 

BE 

B 

I vs. @ (Figure 54), or what is es sen t i a l ly   t he  same, b l/hm V S . ~  B 
(Figure 55) and the  Im0 vs. , ICBO vs. 0 curves  (Figure  56)  can  be  quali-  

t a t ive ly   unders tood  by assuming an increased  surface  recombinat ion  veloci ty  

due t o   i r r a d i a t i o n  o n   t h e   b a s e   s u r f a c e ,   i n   t h e   v i c i n i t y   o f   t h e   j u n c t i o n s .  

This   assumption  as . the  reason  for   increased I is  in  accordance  with  the n 

values  determined from Figure 53, where 1 .4  5 n <, 1.9. There  seems t o  be. 

some discrepancy,  however, i f  we a lso  assume t h a t  I was likewise  dominated 

by the   sur face   genera t ion   cur ren t .  Namely, such a cu r ren t  component is 

presumed t o  be  approximately  independent of voltage  (Ref. 15). I n   t h e  

IEBO vs.   reverse   vol tage,  V curves  of  Figure 57 t h i s  is true  only  above 

0.2 vo l t s .   Essen t i a l ly  similar arguments  apply  for  the I CBO vs .  V curves 

of  Figure 58. 
NPN-~- biased   dur ing   i r rad ia t ion :  (Bias: = 10 v, 1 = 10 ma). E 

B' 

EBO 

R 

R 

'C B 
J u s t  as i n   t h e   p a s s i v e  N P N  case ,  i t  is the  surface  condi t ion  of   the 

base ,   a f fec ted  by the  posi t ive  charge  accumulat ion and the  new i n t e r f a c e  

s t a t e s  which de termines   the   t rans is tor   degrada t ion .  However,  due to   t he  

a c t i v e   b i a s  on the   t r ans i s to r   du r ing   exposure ,   t he  amount of  charge accumu- 

l a t i o n  Can be s ign i f i can t ly   i nc reased  due t o   t h e   f r i n g i n g   e l e c t r i c   f i e l d s  

inf luencing  charge  migrat ions.  It is n o t   y e t   c l e a r  how the   c r ea t ion  of t he  

new i n t e r f a c e   s t a t e s  is a f fec t ed  by biases   across   the  junct ions.   Al though 

i t  is claimed t o  be  independent   of   the   e lectr ic   f ie ld   (Ref .  14), i t  could  con- 

ceivably be injection  dependent.  A l l  i n  all, the  combined e f f e c t  of  the 

charge  accumulation  and  of  the new i n t e r f a c e   s t a t e s  on a c t i v e  NPN t r a n s i s t o r s  
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is dras t ic   indeed .  E.&, the  .&/% vs. 3 f igu res  will e x h i b i t  a s ig -  

n i f i c a n t l y   f a s t e r  gain degradat ion  with  exposure  than  those  for   the  respect ive 

passive  devices.  Also t he   fo rma t ion   o f   an   i nve r s ion   l aye r   ove r   t he   base  will 

be  noted. 

CBE vs. 9 curve i n  Figure (59 ) shown f o r   F a i r c h i l d  2N1613, device #13, 

i nd ica t e s   i nve r s ion   l aye r   fo rma t ion   and   a l so   t he   r eced ing   o f   t he   l aye r   w i th  

f luence.   Inversion  18yer   formation r e s u l t s  i n  a subs t an t i a l   i nc rease   o f   t he  

junct ion  capaci tance  s ince  the  capaci tance due t o  the   f i e ld   i nduced   j unc t ion  

will add to   t ha t   o f   t he   me ta l lu rg ica l   j unc t ion .  The reason   for   the   receding  

of   the   invers ion   layer  is d iscussed   shor t ly ;  i t  is ind ica t ed  by the  broken 

l i n e s   i n   F i g u r e s  59 and 61.. This   conclusion is i n  accordance  with  the n 

values  determined from the  I vs. V curves   of   Figure 60 where n > 2 i n  

the  similar f luence  region.  
B BE 

The e f f e c t  of i n v e r s i o n   i n  I is s t r i k i n g l y   i l l u s t r a t e d  by the  EBO 
s i m i l a r i t y   o f   t h e  IEBO vs. 42 curve  of  Figure (61 ) t o   t h e  CBE vs. 3 p lo t .  

The phys ica l  mechanism  by  which the   i nve r s ion   a f f ec t ed  I appea r s   t o  be 

channeling, i t  will be t r e a t e d   s h o r t l y .  The i n i t i a l ,   s u b s t a n t i a l   r i s e   i n  

IEBO p r i o r  t o  inve r s ion  is due to   the   increased   sur face   recombina t ion  

veloci ty   caused by the   i r r ad ia t ion .   Inc iden ta l ly ,   t he   va lues  of IEBO 

became quite  high  above @ x 1014 electrons/cm2  and  one  might  wonder i f  

t unne l ing   t ook   p l ace   ac ross   t he   f i e ld   i nduced   j unc t im .  This specu la t ion  

is ru led   ou t ,  however,  because  the  presence  of a breakdown vol tage   assoc ia ted  

with  tunnel ing  (value  expected is approximately  0.5-volt  for  our  base  doping) 

of   the   f ie ld   induced   junc t ion  was not observed as shown i n   t h e  I vs. VR 
curves,   Figure (62 ) .  I n   f a c t ,   t h e   s h a p e  of these  curves  did  not  change a t  

all by the  onset  of inversion.  

EBO 

EBO 

Now the   ques t ion   a r i ses   whether   the   pos i t ive   charges   inducing   the  

observed   invers ion   layer   o r ig ina ted   wi th in  or on t h e  Si0 It a p p e a r s   t h a t  

most of  them were co l l ec t ed  0" the   ou ter   sur face   o f   the   ox ide   l ayer   ( th rough 

t h e   i o n i z a t i o n   o f   t h e   g a s   i n s i d e   t h e   t r a n s i s t o r   c a n   a n d   t h e   e l e c t r i c   f i e l d  

between  the  base  and  the  can  which was connec ted   t o   t he   co l l ec to r ) .  Namely 

we obse rved   qu i t e   s ign i f i can t   "Tc l s t a r   t ype"   e f f ec t s ,  i.e., slow d r i f t s ,  

r e s u l t i n g   i n   r e c o v e r y   o f   t h e   t r a n s i s t o r   p a r a m e t e r s   w i t h .   t i m e   a f t e r   t h e  

2' 
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The broken llnes  indIcate  "Telstar-typ" translent changes  wlth time 
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i r r a d i a t i o n .  was stopped  and  the  bias  was disconnec ted .   These   e f fec ts   a re  

ind ica t ed  i n  F igures  (53) and (63) by the  broken  l ines  as mentioned earlier. 

The recoveries   of  C BE and IEBO with   t ime  a f te r   exposure  were o f t e n   s u b s t a n t i a l .  

(Such e f f e c t s  were obse rved   e s sen t i a l ly  on all biased N P N  dev ices . )   In   t he  

past, s u c h   e f f e c t s  were  found t o  be r e l a t ed   t o   t he   r ed i s t r ibu t ion   o f   cha rges  

on   the   ou ter   sur face  of t h e   S i 0  2- 
Note by comparing  figure (59) and  figures (63) o r  (64) t h a t   q u i t e  

s i g n i f i c a n t l y  most  of  the  gain  degradation  took  place  before  the  onset of 

inve r s ion   s ince  "1/% o r  IB went i n t o   s a t u r a t i o n  above e 2  x 1013 e lec t rons /  

cm . Although  the amount of   posi t ive  space  charge on t he  SiOz kept  changing 

as ind ica t ed  by the  onset   and  the  recession  of   the  inversion  layer ,   the   cor-  

respondingly   changing   sur face   po ten t ia l   d id   no t   apprec iab ly   a f fec t   the   ra te  

of  surface  recombination  thus I All these  can be qua l i t a t ive ly   unde r s tood  

s ince   the  surface effects p lay  a dominant role on I and IR only  before 

i n v e r s i o n   o c c u r s ,   a f t e r   i n v e r s i o n   t h e i r   r o l e  becomes l e s s  and l e s s   s i g n i f i c a n t  

because   then   the   e f fec ts  by the   bu lk   t rans i t ion   reg ion   of   the   f ie ld   induced  

junction  take  over.  However, this l a t t e r   e v e n t  is u s u a l l y   n o t   t o o   s e r i o u s   i n  

a f f e c t i n g  IB and IR unless   tunnel ing  occurs .  

2 

B' 
B 

Now s ince   t unne l ing  was absent   never the less  I was d r a s t i c a l l y   a f -  EBO - 
fected  during  inversion,  Ifchannelingff or the   formation  of   an ohmic path 

between  base  and  emitter m u s t  have taken  place.   This would exp la in   t he   l a rge  

changes i n  I as well as the  re la t ive  constancy  of  I thus h during EBO B' FE' 
inversion,  because  channeling  does  not  have much e f f e c t  on a forward  biased 

junct ion.  

The CBc vs. $ d a t a   i n   F i g u r e  09.)  show an   absence   o f   invers ion ,   a l so  

confirmed by I vs. $ on Figure (SL), for   device   cons t ruc t iona l   reasons .  

According to   the  manufacturer   the  base  metal   contact   over laps  the  col lector-  

base  junction  hence  prevents  charge  accumulation 0" t he   su r f ace  of the  oxide. 

Although  the  assumption  of  an  increased  surface  recombination  velocity 

CBO 

e x p l a i n s   t h e   i n c r e a s e   i n  I with  f luence  (Figure 61 ) i t  is p a r t i a l l y  a t  

variance  with  the ICm vs. VR curves  on  Figure (65). Namely, I i s  

approximately  voltage  independent  only  above 6 0 . 2  volt   and  not   over   the 

whole  measurement  range as i t  is theoret ical ly   c la imed.  

CBO 

CBO 
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ELECTRON FLUENCE, H (ELECTRONS/CM~) 

Figure 64. I Versus Fluence (Fairchild 2N1613, Active Bias During Irradiation: \Bc-= IO V, IE= IO ma) 
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PNP -. unbiased   dur ing   i r rad ia t ion :  As s tated  (Appendix  I) , i t  is a small p a r t  of 

the   emi t te r   reg ion   (c lose   to   the   base-emi t te r   junc t ion)  which is pr imar i ly  

a f f e c t e d  by the  posi t ive  charge  accumulat ion  and  the new i n t e r f a c e   s t a t e s ,  

and  subsequently leads to   ga in   deg rada t ion  i n  a PNP s t ruc tu re .   Fo r  ICm 

d e g r a d a t i o n   t h e   c o l l e c t o r   s u r f a c e   i n   t h e   v i c i n i t y  of the   base-col lec tor  

junc t ion  is the  important  region. 

Cm vs. @ is shown i n   F i g u r e  (66) f o r  Raytheon 2N1132, device #ill. 
There is no s ign  of   inversion  of  part of the   emi t te r   reg ion .   This  is i n  

accordance  with  the n values  of  1.24 - 1.55 obtained from the IB vs. 

curves  (Figure 67). Simi lar ly ,   invers ion  is apparent ly   absent   over   the 

c o l l e c t o r   r e g i o n ,   ( s e e  CBc vs. 9 on  Figure 6 6 ) ,  which is somewhat sur -  

p r i s i n g   i n  view of the low surface  doping  normally  found i n   c o l l e c t o r s .  

I n c r e a s e s   i n  I ~ ,  &/%, I ~ ~ ,  as a function  of 9 shown  on Figures  

(68,), ( 6 9 ) ,  and (70) respect ively,   can be qua l i t a t ive ly   unde r s tood   i n  

terms  of  increased  surface  recombination  over  the  respective  junctions.  

This  assumption is i n  accordance  with  the  1.24 "< n '< 1.55 values  obtained 

from Figure (63). However, the IEm vs. V (Figure n) and ICBO vs. 

(Figure 72) curves show v e r y   l i t t l e   i f  any  saturation  tendency  with  voltage 

which is a t  var iance   wi th   the   theore t ica l   p red ic t ions  of the  vol tage 

independence  of  the  surface  generation component of   current .  

R vR 

PNP - b iased   du r ing   i r r ad ia t ion   (B ias :  VCB = 10 v ,  1 = 0.1 ma): E 
We saw prev ious ly   t he   t r emendous   d i f f e rence   i n   i r r ad ia t ion   behav io r  

between  the  passive  and  active NPN devices.  No such   s ign i f i can t   d i f f e rences  

were observed  between  the  passive  and  active PNP t r a n s i s t o r s .  It is t rue  

t h a t ,  due to   t he   r eve r se   b i a sed   co l l ec to r   base   j unc t ion ,   an   i nc reased   cha rge  

accumulation  thus more severe  I degradat ion was expected  and  indeed ob- 

s e r v e d   i n   a c t i v e  PNP devices   (see  Figures  70 and 77) .  Differences,  however, 

p rac t i a l ly   d i sappea red  when the  gain  degradat ion  curves  were  compared. A l -  

t hough   t he   de t a i l ed   a rgumen t s   t o   accoun t   fo r   t h i s   obse rva t ion   a r e   no t   c l ea r ,  

a t  p re sen t ,   c e r t a in   t en t a t ive   i deas   can  be presented. For one  thing,  the 

charge  accumulation on the  Si0 su r face  m u s t  s u r e l y  be d i f f e r e n t  from the  

NPN c a s e ,   s i n c e   t h e   d i r e c t i o n   o f   t h e   f r i n g i n g   e l e c t r i c   f i e l d  between  the 

can  and  the base or t he   emi t t e r   su r f ace  (due to   the   reverse   b iased   co l lec tor -  

base  junction) is such now that   the   posi t ive  gas   ions,   generate 'd   inside  the 

CEO 

2 
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ELECTRON FLUENCE, % (ELECTRONS/CM~) 

Figure 66. CBE and .CBC (Zero Bias)  Versus Fluence (Raytheon 2N1132, PaJive During Irradiation) 
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can, are  moved toward   the   t rans ia tor  can. But  then the pos i t ive   charge  

accumulation on t h e  SiO, could  be mall which is e s s e n t i a l l y   t h e  case also 

f o r   t h e  passive PNP devices.  Secondly, i n  an NPN device   the   deple t ion  of 

t he  ri l icon su r face   and   t he   c r ea t ion   o f  new interface states occur 

coin,cidental ly  a t  the   base  surface. Hence t h e i r  effect  can   re inforce  

each   o the r   s ign i f i can t ly .   Th i s  m a y  not  be t h e  case f o r   t h e  emitter r eg ion  

of a PNP device. If, e.g., t h e   c r e a t i o n  of t h e  new i n t e r f a c e  states over  

the   base  of an a c t i v e  NPN s t r u c t u r e  were enhanced  by e l e c t r o n   i n j e c t i o n  

then  such an enhancement  would n o t   o c c u r   i n   t h e  emitter reg ion   of  an a c t i v e  

PNP t r a n s i s t o r ,  due to   the  absence  of   such an i n j e c t i o n .  Then t h e   d i f f e r e n c e s  

i n  i r radiat ion  response  between  passive  and  act ive PNP t r ans i s to r s   cou ld   be  

r e s t r i c t e d   e s s e n t i a l l y   t o   s l i g h t   d i f f e r e n c e s   i n   c h a r g e   a c c u m u l a t i o n   w i t h i n  

the   S i02 ,   t he   ne t   e f f ec t   o f  which  might  be small. Clear ly ,   fur ther   specula-  

t i o n  is not   jus t i f ied   wi thout   the   benef i t   o f   addi t iona l   exper imenta l   da ta .  

The remarks on the   f i gu res   a r e   ve ry  similar t o   t h e  PNP - unbiased 

case. Both CBE vs. 3 and CBc vs. H (Figure 73) ,  shown for  Raytheon 2N1132, 

device #l21, i nd ica t e   t he   absence   o f   i nve r s ion   i n   t he  emitter and   co l lec tor  

r eg ions   r e spec t ive ly .  The n va lues   o f   1 -25  - 1.64 obtained from the  I B vs* 
VBE curves  (Figure  74)  support   the  conclusion. The assumption o f  increased  

surface  recombination  over  the  junctions as the  main reason   for   the   increase  

i n  IB (Figure 7 5 ) ,  A l/hm  (Figure 761, IEBO (Figure 771, ICBO (Figure 77) 
a re   a l so   in   accordance   wi th   the   quoted  n values .  However, t he  presumed vol t -  

age  independence of the  surface  dominated I is demonstrated  on  the I 

I curves  in  Figure  (78)  only  above 0.1 v o l t   ( a t   l a r g e   f l u e n c e s ) .  Worst y e t ,  

the  IEBO VS. V cu rves   i n   F igu re  (79) a r e  a t  var iance   wi th   the   theore t ica l  

predict ions  over   the  whole  vol tage  ranze.  

C BO CBO vs. 

R 
R 
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2.4 Task B - In f luence  of Active  Operation  During Exposure 

Act ive   opera t ion   dur ing  mxposure s i g n i f i c a n t l y  enhanced the   sen-  

s i t i v i t y  of NPN transistors t o  nonlinear damage. L a t i n  Cube computer 

analysis   (Reference  19)   of  a multifactor  experimental   design  not  only  pro- 

vided  data   on  this   dependence  of  damage on electrical  b i a s i n g   ( d u r i n g   t h e  

1 Mev e l ec t ron   exposure )   bu t   a l so   da t a   on   t he   poss ib i l i t i e s  of any i n t e r -  

dependence of t e s t  var iab les   such  as curren t ,   vo l tage ,  and  dose.  Because 

of t he   i nc rease  of  damage f o r   a c t i v e  NPN dev ices  and  because of  post  ir- 

r ad ia t ion   r ecove ry ,   pu l se   t e s t e r   t echn iques  were  developed  for  the 2.9 

Mev l i n a c  t e s t  and t h e  15 Mev p ro ton   t e s t .  With t h e   p u l s e   t e s t e r ,  meas- 

urements were made in   s i t u   w i thou t   d i sconnec t ing  any b i a s   vo l t ages .   In  

t h e  15 Mev proton tes t  important  anomolies i n   t h e   r a t i o   o f   a c t i v e   t o   p a s -  

s i v e  NPN t r a n s i s t o r  damage  wa6 observed. 

2.4.1  Enhanced Damage i n  NPN T r a n s i s t o r s  

WN t r a n s i s t o r s  showed much more damage when they  were operated 

ac t ive ly   du r ing  exposure r a the r   t han   pas s ive ly .   E lec t ron   r e su l t s  on 

biasing  dependence  observed i n   t h i s  phase I1 c o n t r a c t  axe i n   gene ra l   ag ree -  

ment with  Boeing  Cobalt -60 gamma r e s u l t s   o b t a i n e d  ear l ie r .  (References 9 
and 20). Bias cond i t ions  for compara t ive   s tud ies   a re  shown i n  Table 9 f o r  

those  devices   that   received  special   measurements   such as t h o s e   l i s t e d   i n  

Table 3. D e t a i l s  of t h e   r e s u l t s   o f   t h o s e   s p e c i a l  measurements  on a c t i v e  

and p a s s i v e   t r a n s i s t o r s  were d e s c r i b e d   i n   S e c t i o n  2.3.5. Addi t iona l   b ias ing  

cond i t ions  were  used i n   t h e   m u l t i f a c t o r   e x p e r i m e n t a l   d e s i g n   d e s c r i b e d   i n  

Sect ion 2.4.2. 

Typical  computer  plots of NPN and PNP damage wi th   ac t ive   b i a s ing  

during  exposure are  shown i n   F i g u r e s  80 and 81 re spec t ive ly .   Fa i r ch i ld  

2N1613 Trans i s to r s   w i th   ope ra t ing   cond i t ions  of I - 0.1 m a ,  and VCB = 10 

v o l t ,  showed enhanced damage at all n ine   cu r ren t   l eve l s   (F igu re  80) when 

compared with similar dev ices   t ha t  were  exposed  passively  (Figure 40). 
(Using  the low c u r r e n t   g a i n  module  on t h e   F a i r c h i l d   S e r i e s  500 t r a n s i s t o r  

t e s t o r ,   g a i n   v a l u e s  below 1.9 were  observed  and shown on Figure  80).   Figure 

81, showing r e s u l t s   o f  a Raytheon 2N1132 t r a n s i s t o r   o p e r a t e d  a t  I - 5 ma and 

E -  

E -  
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Table 9 

Bias Condition 

IE = 0.1 ma 

VCE = 1ov 

I = l o r n  C 

No Bias 
(PasszFe) 

Numbers of Transistors 

Receiving  Special  Measurements 

f o r  Bias Comparison 

- ~- 

Fairchi ld  

5 

5 

5 

Fairchi ld 

- 

5 

Raytheon 

5 

5 

5 

I 
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l o l l  1 0 l 2  d 4  
Fluence  (Electrons/cm ) 

DC Gain vs Fluence,  Family of Collector  Currents,  Type 2N1613, No. 71 

2 

(On the flattened-out 10-pa curve---see text) 

Figure 80: DEPENDENCE OF NONLINEAR DAMAGE ON T H E   I N J E C T I O N   L E V E L   D U R I N G  
MEASUREMENTS I N  PARAMETRIC FORM ( F A I R C H I L D   2 N 1 6 1 3   A C T I V E  GROUP; 
MEASUREMENT  CURRENTS FROM TOP  TO  BOTTOM: 10-30-100-300 p a ,  
1-3-1 0-20-40 ma) 
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DC Gain vs Fluence,  Family of Collector  Currents,  Type  2N1132, No. 129 

Figure 81: DEPENDENCE  OF  NONLINEAR DAMAGE ON THE  INJECTION  LEVEL  DURING 
MEASUREMENTS I N  PARAMETRIC FORM (RAYTHEON  2N1132 ,   ACTIVE GROUP; 
MEASUREMENT  CURRENTS  FROM  TOP  TO  BOTTOM: 10-30-100-300 p a ,  
1-3-10-20-40 ma) 
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V C ~  = 2 vo l t s  (one of t h e  l a t i n  cube  devices of Sec t ion  2.4.21, i l l u s t r a t e s  

the  reduced damage o f   ac t ive  PNP t r a n s i s t o r s  when'compared  with similar 

pass ive  PNP t ransis tors  (Figure 42). F igu res  80. and 81 are, i n   g e n e r a l ,  

t y p i c a l  of all of t h e  group. of active dev ices   t e s t ed .  

No s t a t i s t i c a l   s t u d y  was c a r r i e d   o u t   t o   a s c e r t a i n   d i f f e r e n c e s  be- 

tween different   date   codes  and  manufactures  when exposed  under  identical  

bias condi t ions .  A t  least not   in   the  comprehensive manner d iscussed   for  

t he   pas s ive   dev ices   i n   Sec t ion  2.3.2. For each   ac t ive   b i a s   cond i t ion  

(Table 9 and t h e   l a t i n  cube  conditione  of  Section  2.4.2)  only 5 devices  

were tested.   These were taken from the   t h ree   d i f f e ren t   da t e   codes (2  + 2 + 1 = 5 )  
t o  make t h e   r e s u l t s  more g e n e r a l   i n   n a t u r e .  A far g r e a t e r   s t a t i s t i c a l   s p r e a d  

was ov iden t   fo r   ac t ive   dev ice  damage than   for   pass ive .  Those survey r e s u l t s  

i n d i c a t e   t h e   d e s i r a b i l i t y  for a btat is t ical  s tudy   of   ac t ive   devices .  

The average   va lues   o f   ga in   degrada t ion   for   f ive  2N1613 F a i r c h i l d  

t r a n s i s t o r s   w i t h  V = lOv, IE = 0.1 ma during  exposure is shown i n  Figure 

82 and can be  compared with  the  corresponding  average  values for pass ive  

2N1613 t r a n s i s t o r s  shown much ear l ie r  i n   F i g u r e  18. Differences  between 

act ive and  passive  devices  are c l e a r l y   i l l u s t r a t e d   i n   F i g u r e s  83 f o r  meas- 

urement   col lector   currents  of 0.1 ma and 1 ma. About an  order  of  magnitude 

g r e a t e r  damage f o r   a c t i v e   d e v i c e s  i s  s e e n   a t  lo6 r a d   S i  measured a t  I = 0.1 ma. 

Dif fe rences   be tween  ac t ive   and   pass ive   t rans is tors   (nonl inear )   l /h  

pass ive   subt rac ted  from A l /hm  ac t ive  a r e  p l o t t e d   i n   F i g u r e  84 showing  the 

very   def in i te   peaking  a t  10 r a d  S i   a l r c a d y   e v i d e n t   i n   F i g u r e s  8c 2nd 82. 

Di f fe rences  a t  high  expvsure  levels  where  displacement damage is present  is 

not shown i n   t h i s   F i g u r e .  

CB 

. e  
FE 

6 

Elec t ron   nonl inear  damage t o   a c t i v e   t r a n s i s t o r s   c a n  be compared with 

Cobalt -60 gamma r a y  damage shown i n   F i g u r e  85. It can be s e e n   t h a t  1 Mcv 

e l ec t rons   (F igu re   82 )   appea r   t o  cause g r e a t e r  damage to   ac t ive   dev ices   t han  

a corresponding  absorbed  dose of  Cobalt -60 gamma rays.  Although  the  curves 

a re   c lose  a t  low and high  exposures,   there is  about a Sactor   of  2 trlore damage 

from e l e c t r o n s  a t  t h e  damage peak. Exposure rates f o r   e l e c t r o n s  and gamma 

r a y s  were comparable for low exposures   but   ul t imately a t  high  exposures   e lec-  
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t r o n  rates were much higher   than gamma rates ( see   Sec t ions  2.2.1 and 

2.2.2). Equivalent  amounts  of  absorbed  dose  from gamma r a y s  and   e lec t ron  

caused  equivalent damage i n  t r a n s i s t o r s  exposed  passively  (Figure 9). The 
l a c k  of rate effects  f o r   p a s s i v e   t r a n s i s t o r s  was es t ab l i shed  by inhouse 

Boeing tests, however ra te  effects  on ac t ive   dev ices   shou ld   be   s tud ied   i n  

some d e t a i l .  

The steeper  dependence  of A l/hm on  fluence  or  dose [or a c t i v e  

devices  as opposed t o   p a s s i v e   g e n e r a l l y  would r e q u i r e  a value of D l  f o r  

t h e  power law assumption of equation  12  (Section  2.3.3).  Because  of  the 

l i m i t e d  number of   devices   t es ted  and the  obvious  importance of s t a t i s t i c a l  

spread no attempt will be made a t  t h i s  time t o   f i t   a c t i v e   d e v i c e s   t o   a n  

empirical   formula  such as t ha t   deve loped   ea r l i e r   i n   equa t ion  19. Indica- 

t i o n s  are  t h a t   a g a i n  a fo rmula t ion   u s ing   r e l a t ive   ga in  l o s s  would be   bes t  

( s ee   Sec t ion   2 .3 .3 )   s ince   co r re l a t ions  between A h  and  hm do appea r   t o  

be  present for ac t ive   dev ices  as wel l  as passive.   Figure 86 shows a 

f a i r l y  good co r re l a t ion   ( r ank   coe f f i c i en t   o f  0.89) f o r   a c t i v e  2Nl6l3 tran- 

s i s t o r s .  

FE i 
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Type 2N1613, F a i r c h i l d   T r a n s i s t o r s  
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Figure 86: CORRELATION OF GAIN LOSS WITH  INITIAL  GAIN  (2N1613  ACTIVE) 

136 



2.4.2 Multifactor  Experimental  Design 

I n  o rde r  t o  inves t iga te   whether   in te rac t ions   be tween  opera t ing   cur ren t ,  

b ias   vo l tage ,   and   f luence   a f fec t   the   rad ia t ion- induced  damage observed i n  

t rans is tors ,   an   exper iment  was des igned   to   measure   the   e f fec ts   o f   these  

fac tors   bo th   s ing ly   and   in   combina t ion .  A second-order model w i t h   c e n t r a l  

composite  design  based upon the  work of Box and  Hunter  (Ref. 19)  w a s  chosen. 

This  approach  assumes  that   the  significance of the  interdependence  of  factors 

can  be  examined i n  a precursory manner by expressing damage as a second-order 

polynomial i n   c u r r e n t ,  I , voltage, V, and  fluence, Q. 

" AhFE - co+c1~+c2v+c *c,+I 2 2  +c v +ce2+c I V + C ~ I C + C ~ W  
h FEi 3 5 7 

The s e t  o f   coe f f i c i en t s  IC3 is chosen  to  give a minimum l e a s t - s q u a r e s   e r r o r  

f i t  to   the  observed data. 

By s u i t a b l e   s e l e c t i o n   o f   t h e  measurement po in t s  ( I ,  V ,  e), the  least- 

squares   equat ions  can be g rea t ly   s imp l i f i ed   (Ref .  21). S ince   there   a re   th ree  

v a r i a b l e s   o f   i n t e r e s t   i n   t h i s   c a s e ,  a su i t ab le   des ign  model will take  the form 

of a cube. 

I 

Central   composi te   design  in   three  dimensions 
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A minimum of twenty  measurements m u s t  be made for   each   exper iment :   e igh t  

measurement p o i n t s  l i e  a t  the   co rne r s  of t h e   c u b e ;   s i x   p o i n t s  l i e  a long   t he  

axes; s i x  measurements are made a t  t h e   c e n t e r  of the  cube. If the   var iab les  

are normalized so t h a t   t h e   c e n t e r  of the  cube l i e s  a t  ( 0 ,   0 ,  0 )  and one 

corner  l i e s  a t  (1, 1, 1) i n  the  normalized  coordinate  system,  then  the 

measurement p o i n t s  on  the axes l i e  a t  the   po in t s  ( 2  1.68, 0, o), (0, 2 1.68, o ) ,  

and ( 0 ,  o,  2 1.68). The va lues   used   for   cur ren t ,   vo l tage ,   and   f luence   a re  

l i s t e d   i n   T a b l e  10. These e l e c t r i c a l   c o n d i t i o n s  were d i c t a t e d  by symmetry 

requirements  on  the  Latin Cube computer   ana lys i s   descr ibed   in   the   p roposa l  

document D2-125398-1 (Ref. 1). T e s t   c i r c u i t r y   t o   p r o v i d e   t h e s e   o p e r a t i n g  

condi t ions  were designed  and  fabr icated as shown i n   F i g u r e  87. Five  devices 

of a given  type were s p e c i f i e d  a t  each  bias   condi t ion.  Two each were taken 

from b a t c h   n u b e r  1, 2 each from batch number 2 ,  and 1 each from batch 

number 3.  

An analys is   o f   var iance  t a h l e  w a s  cons t ruc t ed   t o   measu re   t hz   f i t  of 

the  polynomial  and  the  adequacy  of  the model. Since  the component of the 

r e s i d u a l  due t o   l a c k   o f  f i t  was comparable i n  magnitude t o   t h e  component 

due t o   e x p e r i m e n t a l   e r r o r ,  we can   conc lude   t ha t   t he   va r i ab i l i t y   o f   da t a  

about  the  polynomial is similar t o   t h a t  which is expected  due t o  experimental 

e m o r s  alone. 
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Table 10. Design  Matrix 

Normalized  Coordinates' 

i V 6 

-1 
1 
1 

-1 
0 
0 
1 

-1 
-1 
1 
0 
0 
-d 
d 
0 
0 
0 
0 
0 
0 

*a= 1.68 

-1 
1 

-1 
1 
0 
0 
1 

-1 
1 

-1 
0 
0 
0 
0 
-d 
d 
0 
0 
0 
0 

-1 
-1 
1 
1 
0 
0 
1 
1 

-1 
-1 
0 
0 
0 
0 
0 
0 

-4 
6 
0 
0 

True Values 

2.2 
7.8 
7.8 
2.2 
5.0 
5.0 
7.8 
2.2 
2.2 
7.8 
5.0 
5.0 

-3 
9.7 
5.0 

1 

5.0 
15.0 
5-0 

15.0 
10.0 
10.0 
15.0 
5.0 

15.0 
5-0 lor 
1.6 

18.4 
10.0 I 

9 97x1011 
11 

9 - 9 7 ~ 1 0 1 ~  
2. 18x1012 
2.18~10,~ 
1 . 5 1 ~ 1 0 ~ ~  

2 . 1 8 ~ 1 0 , ~  
2 . 1 8 ~ 1 0 ~ ~  

1.51~10 

1. 51X1012  

9 . 9 7 ~ 1 0 ~ ~  
9 9 7 ~ 1 0 1 ~  

3 .  24?1012 11 
3*37x1012 

1. fjlXl0 
1.51X1ol2 

2 . 4 6 ~ 1 0 ~ ~  12 
2. 46X1013 
2.00xlO 

9. 21X1012 
9. 21x1013 
2.00xlO 

2. 46x1012 
2 . 4 6 ~ 1 0 ~ ~  
9.21xlO 

3 . 6 4 ~ 1 0  1 11 
3 32X10l2 13 
9. 21x1012 
9.21xlO 

2. 0OX1Ol2 13 

2. 0OXlOl2 13  
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Figure 87. Test Circuitry for Transistor  Biasing 
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I n   L a t i n  Cube space coe f f i c i en t s   can   be   eva lua ted   fo r   equa t ion  (20) using 

normalized  coordinates i n  Table 10. 

wh. = Bo+Bii+Bvv+B@+Bi2i 2 +B 2v 2 +B P2+BiviV+B. i#+Bv@V@ 

I v p l  I# 

The magnitude  of t he   coe f f i c i en t s   i n   coo rd ina te   space   i nd ica t e   t he   r e l a t ive  

importance  of  each term. D i f f e r e n c e s   i n   e v a l u a t i o n   o f  B. were noted as 

shown i n  Table 11. 
1 

Table 11. Evaluat ion  of  B Bv and B i' # 

I T r a n s i s t o r  Type 

pnp 2N1132 

npn 2N1613 

pnp 2N1132 

~ - .  

Current   o f   Gain  In j ec t ion   Leve l  
~~ ~ ~ 

Measurement  During  Exposure 'i 

IC = 10 pa See  Table 10 - .0001 

See  Table 10 - . Od04 
Bias Conditions  See  Table 10 -. 065 
of  Table 10 

B i a s  Conditions See  Table 10 - -047 
of  Table 10 + +. 054 + .136 

+. 016 + .171 

+. 015 +. 042 

+. 011 + .115 

The B.  va lues   i n   Tab le  11 i n d i c a t e   t h a t   i f  a f i x e d   c o l l e c t o r   c u r r e n t  is used 

t o  measure ga in   t hen   t he re  is no s i g n i f i c a n t  dependence  of  gain loss on 

in j ec t ion   cu r ren t   ( f rom 0.3 t o  9.7 ma). I f ,  however, gain is measured a t  

the same c o l l e c t o r   c u r r e n t  as the   i n j ec t ion   l eve l   du r ing   exposure   t hen   t he re  

is a s i g n i f i c a n t  dependence  on  measurement cur ren t   ( for   the   range  from 0.3 t o  

9.7 ma). Current  gains were measured a t  a f ixed   co l l ec to r   t o   base   vo l t age  

(VcB = 10 v o l t s ) .  The magnitude  of  the  values of B i n  Table 11 i n d i c a t e  

t h a t   t h e r e  is a dependence  of  on  the  voltage a t  which devices are 

biased  during  exposure  ( for   the  range o t  1.6 t o  18.4 vo l t s ) .   Th i s  dependence 

is weaker  than  that due t o   c o l l e c t o r   c u r r e n t  a t  which gain was measured. The 

s t r o n g e s t  dependence i n   g e n e r a l  was upon electron  dose as i n d i c a t e d  by the  

magnitude of B values .   Negat ive  values   for  B i n d i c a t e   ( a s  was expected) 

g r e a t e r  damage f o r   g a i n  a t  lower  measurement  currents.  Positive  values  of 

B and B i n d i c a t e   g r e a t e r  damage f o r   l a r g e r   b i a s   v o l t a g e s   a p p l i e d   d u r i n g  

1 

V 

I .  

Pr i 

V @ 
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I 1  I I I I 

exposure  and  for   high  levels   of   radiat ion  exposure,   respect ively.  Average 

va lues   fo r   t he  cross terms were as follows: 

The magnitude  of   the  values   of   cross   terms  indicates   that ,   a l though inter-  

dependences  between I ,  V ,  and may modify damage, i n   g e n e r a l   t h e y  are 

r e l a t ive ly   i n s ign i f i can t   be tween   t he  limits of :  O i 3  t o  9.7 ma, 1.6 t o  18.4 
v o l t s ,  3 x t o  3 x e/cm2 (npn) , and 3 x t o  3 x 1013 e/cm (pnp) . 2 

The L a t i n  Cube normalized  coordinate   equat ion (Eq. 21)  can be t rans-  

formed t o  real space. 

+ A 2 + %V I C  'CB + !I I C  + % 'CB 
L 

Using  the real coordinate   values   of   Table  10 the  dependence  on  each  of  the 

real v a r i a b l e s   s e p a r a t e l y  (I c, VCB, and ) can be determined  about   the  center  

po in t   o f   the   cube   ( I  = 5 ma, VCB = 10 vo l t s   and  = 1.5 x 1 0 l 2  e/cm2 f o r  npn 

t r a n s i s t o r s ) .  An example is now worked ou t  for t he  I dependence of  npn 

t r a n s i s t o r s .  

C 

C 

0.19 - .054 IC + .004(lOV) + 2 . 4 4 ~ 1 0 - ~ ~ ( 1 . 5 ~ 1 0  e/cm ) + .004 IC 

+ .0002( l0V)  (l0V) - 3.7X10 ( 1.5xl0l2 e/crn2) ( 1 . 5 ~ l O ' ~  e/cm2) 

1 2  2  2 

- 26 

. 0 0 0 9 ( l O V  IC + l.3x10-15(1.5x10 12 e/cm ) IC 2  (23) 

+ 1.4 x  10-15(10V) (1.5 x 10l2 e/cm2) 

(The real coef f ic ien ts   computer   eva lua ted   for   equa t ion  23 can be deciphered 
from the terms above.) 

This   reduces   to  

hd%E - z 1 - 0.1 IC + 0.01 I 2 

i C 
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f o r  npn t r a n s i s t o r s   ( f o r  VCB and space  from 1.6 t o  18.4 v o l t s ,  3 x 10l1 t o  

3 x 10l2 e/cm ). The dependence  on I is i n   gene ra l   ag reemen t   w i th  
C 

a l / h ,  = cons t  IC (l’n - as d i s c u s s e d   i n   s e c t i o n  2.3.1 as well as t y p i c a l  

r e s u l t s   o f   f i g u r e  20 shown i n   t h a t   s e c t i o n .  As seen from the  last th ree  

terms of   equat ion 23, the   in te rdependence   coef f ic ien ts  AIv, and AI* are 

small b u t   i n t e r e s t i n g   ( s e e  e dependence  on IC p l o t s  of f i g u r e  20). 

2 

The dependence  of damage on co l l ec to r   t o   base   vo l t age   app l i ed   du r ing  

exposure, VCB, reduces t o  

f o r  npn t r a n s i s t o r s   ( f o r  I, and Q space from  0.3 t o  9.7 ma and ,3 x 10l1 t o  

The dependence of damage on e l e c t r o n  

%%‘E i 1/8 1 + 2 x c 
f luence Q reduces  to  

1 )  

f o r  npn t r a n s i s t o r s  ( f o r  IC and VCB space from 0.3 t o  9.7 ma and 1.6 t o  18.4 
vo l t s   r e spec t ive ly ) .   Equa t ion  26 in   gene ra l   f i t s   t he   f l uence   dependence  

d e s c r i b e d   i n   s e c t i o n  2.3.3. A further  than  second  order  polynomial  expansion 

i n  ib  might well have approximated  the  empirical form f o r  damage d i s c u s s e d   i n  

s e c t i o n  2.3.3. The ser ies   expans ion  f o r  tanh l& is 

The genera l  form of each  of  the pnp equat ions  f o r  dependence on IC, 
VCB, and were similar to   equa t ions  24 through 26. 
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2.4.3 Pulsed h Tester Techniques FE 
TO l e s s e n   t h e  time requ i r ed  between i r r a d i a t i o n  and hm measurement, 

t hus  making f e a s i b l e   t h e   t a k i n g  of more d a t a   p o i n t s  and lessening   any  

anneal ing which might occur   during a prolonged  delay, a plan was devised 

t o  make i n   s i t u  h measurements. Two of t h e   t e n   t r a n s i s t o r s  of each  type 

t e s t e d  were ac t ive ly   b i a sed   du r ing   15  MeV proton and 2.9 MeV e l e c t r o n  

i r r a d i a t i o n .  The c i r c u i t r y   f o r   t h e s e   t r a n s i s t o r s  was a simple emitter 

f o l l o w e r   c i r c u i t   w i t h   t h e  emitter t a k e n   t o  - 10 vol ts   (depending on the  

t rans is tor   type)   th rough a one-megohm res i s to r ,   t he   base   t aken   t o   g round  

(common t o   t h e  emitter and co l l ec to r   supp l i e s )   t h rough  a 100 kilohm re- 

s i s t o r  and t h e   c o l l e c t o r   t a k e n   t o  7 10 v o l t s  (depending on t h e   t r a n s i s t o r  

type) .   This   curcui t   b iased  the  t ransis tors   to   conduct   approximately  ten 

microamperes  of  emitter  current.  Emitter and base   cur ren t  (and thus h ) FE 
could  be  monitored  continually by measuring  the  voltage  drop  across  the 

emitter and b a s e   r e s i s t o r s  which were mounted e x t e r n a l   t o   t h e   s c a t t e r i n g  

chamber. The r ema in ing   e igh t   o f   t he   t en   t r ans i s to r s  of  each  type were 

p a s s i v e   d u r i n g   i r r a d i a t i o n  and h was measured  using  the  pulsed h test 

s e t  up  shown in   ' F igu re  88. The emitter and base   o f   each   pas s ive   t r ans i s to r  

was s w i t c h e d   i n s i d e   t h e   s c a t t e r i n g  chamber using a leadex  switch which was 

c o n t r o l l e d   e x t e r n a l l y .  The t r ans i s to r   unde r  test  was pulsed  with a constant  

emitter cu r ren t  (10, 100 pa, 1 or 10 ma) pulse  and a corresponding  base 

cu r ren t  which w a s  moni tored   to   de te rmine   the   t rans is tor  h FE. A pulse  width 

of 300 microseconds was used to   p rovide  a pulse  width which was long  compared 

t o   t h e  rise and f a l l  times of the   sys tem  thus   permi t t ing   the   sys tem  to   reach  

DC test condi t ions  while   a l lowing a  minimum of junc t ion   hea t ing .  

m 

+ 

FE f e  

Cons ider   the   opera t ion   of   the  h t e s t e r   w i t h   t h e   s w i t c h e s  i n  p o s i t i o n s  FE 
shown i n   F i g u r e  88 (NPiV). A negat ive   emi t te r   pu lse  of approximately 10 v o l t s  

( the   zener   vo l tage  of  t he  1~825  p lus   t he  IR drop  of t he   zene r   cu r ren t   ac ross  

t h e  500 ohms b a s e   r e s i s t o r )   d r i v e s   t h e  emitter cur ren t   source   genera tor  which 

Suppl ies  a constant  current  pu l se   t ha t  is determined by the  value  of   the 

emitter r e s i s t o r  (5% K f o r  10 p a  of cu r ren t  ) i n   t he   cu r ren t   sou rce .  The 

base   cu r ren t   d r ive r   ampl i f i e r  is an   ope ra t iona l   ampl i f i e r   w i th   t he   t r ans i s to r  

under test  in   t he   f eedback   l oop .  When the   cur ren t   source  i s  pulsed,   the  
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Figure  89:  ACTIVE  MEASUREMENT  EQUIPMENT 



2.4.4 Anomalous Bias Dependence f o r   P r o t o n  Damage 

FNP t r a n s i s t o r s ,   u n d e r   a c t i v e   b i a s   d u r i n g   r a d i a t i o n  exposure ,  gene ra l ly  

su f f e r  less damage than when they are passive d u r i n g   i r r a d i a t i o n   ( a s   i n d i c a t e d  

i n   s e c t i o n  2.4.1 fo r   e l ec t ron   exposure ) .  The r e s u l t s  of proton  exposure  of pnp 

t r a n s i s t o r s  were similar t o   e l e c t r o n  damage b o t h   i n  magnitude f o r   e q u i v a l e n t  

absorbed   dose   ( see   rad ia t ion   equiva lence   sec t ion   2 .3 .4)   and   in   the   re la t ive  

damage s e n s i t i v i t y  between ac t ive   and  passive devices.  T h a t  r e s u l t  is 

i n d i c a t e d   i n   F i g u r e  90. (The  dashed l i n e   o f   F i g u r e  90 i n d i c a t e s   t h e   s l i g h t  

dev ia t ion  between I and I gain  measurements a t  damage g r e a t e r   t h a n A ( l / h )  = 
0.1. 

E C 

NPN t rans is tors ,   under   ac t ive   b ias   dur ing   exposure   genera l ly  show 

greatly  enhanced damage over that of passive  devices  (Ref. 9 )   ( a l so   d i scussed  

i n   s e c t i o n  2.4.3 f o r  g a m m a  r ays   and   e l ec t rons ) .  When npn t r a n s i s t o r s  were  ex- 

posed t o  15 MeV protons,   however,   the  nonlinear  gain  degradation was g r e a t e r  

than  that   expected on the   bas i s   o f   ion iza t ion   equiva lence .   Pro ton  damage t o  

passive npn t r a n s i s t o r s  was ac tua l ly   c lose r   t o   t he   enhanced   e l ec t ron  damage 

observed on a c t i v e  npn t r ans i s to r s   wh i l e   dev ices   ope ra t ed  a t  10 v o l t s  V and 

10 )lamps I during  exposure were a c t u a l l y  damaged less than   pass ive   devices  

i n   t h e  same exposure tes t .  T h i s   r e s u l t  is apparent  from a comparison  between 

proton t e s t  r e su l t s   o f   F igu re  91 and   t he   ac t ive   and   pas s ive   e l ec t ron   r e su l t s  

in   F igures   82   and   F igure  18, r e spec t ive ly .  The s i g n i f i c a n c e  of these results 

w i l l  be d i s c u s s e d   f u r t h e r   i n   s e c t i o n   2 . 6  when t h e   d e s i r a b i l i t y  and f e a s i b i l i t y  

of  combined t e s t i n g  is discussed. 

CB 

E 

The  anomalous  dependence  on b i a s   c o n d i t i o n s   f o r   p r o t o n  damag-e t o  npn 

t r a n s i s t o r s  was not  expected  and  should be s t u d i e d   f u r t h e r   i n   o r d e r   t o   p r o v i d e  

i n s i g h t   i n t o  damage mechanisms ( t h e   i n t e r p l a y  between  the  creation of i n t e r -  

face s i t e s  and  charge  buildup - see   sec t ion   2 .3 .5) .  I t  appea r s   t ha t  a d e t a i l e d  

b ias   s tudy   (d i f fe ren t   in jec t ion   leve ls   and   vo l tages   dur ing   exposure)   ought   to  

be conducted   for   p ro ton   e f fec ts  as has  already  been  performed fo r  e l e c t r o n  

(sect ion  2 .4 .2)   and g a m m a  exposure  (Ref. 9). 
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2.5 UPDATING OF DISPLACEMENT EQUIVUNCXS 

Effor t s   to   update   d i sp lacement   equiva lence   va lues   under   th i s   cont rac t  

included: (1) The  remeasurement of t r a n s i s t o r s   h e a v i l y   i r r a d i a t e d  by elec-  

t rons  under   an earlier c o n t r a c t ,  NAS5-9578 (Ref. 2), (2)   the  extension  of  

gamma ray i r rad ia t ion   of   t rans is tors   exposed   to   lower   l eve ls   under   cont rac t  

NAS5-9578, and ( 3 )  the   extension  of  15 MeV p ro ton   t e s t ing   unde r   t h i s  con- 

t r a c t   i n   p l a c e  of  combined e l e c t r o n  and proton tes ts  ( t o  be d i s c u s s e d   i n  

more d e t a i l  i n  sec t ion   2 .6) .  

2.5.1 Remeasurement o f   T r a n s i s t o r s   ( I r r a d i a t e d   i n   P h a s e   I )  

Neutron  studies  (Ref.  22)  have shown that   d isplacement  damage can  have 

a weak dependence  on c o l l e c t o r   c u r r e n t   a t  which the common e m i t t e r   c u r r e n t  

gain is measured.  This  phase I1 study  of   nonl inear  damage did  not   include 

a program  of   extended  e lectron  tes t ing  to   l inear  damage regions where d i s -  

placements  dominate.  Thus in   o rde r   t o   ve r i fy   t ha t   d i sp l acemen t   equ iva lence  

values of  phase I t e s t s   ( a t  I = 10 ma) were v a l i d   f o r   o t h e r   c u r r e n t s ,   f u r t h e r  

a n a l y s i s  of heavi ly  damaged devices was conducted. 
C 

The base   t r ans i t  times, tb, a t  IE = 2.8 ma and 5.0 ma were determined 

for t r a n s i s t o r s   t e s t e d   i n   t h e   p h a s e  I program in   o rde r   t o   accompl i sh   t he   fo l -  

lowing   spec i f ic   ob jec t ives :  

1. Obtaining damage c o n s t a n t s   a t   s e l e c t e d   v a l u e s  of I which then 

furnished  equivalence  values  between  the  different  types of radiation.. 

Base t r a n s i t   t i m e s  a t  the  same I values  were necessary  for   tne  normalizat ion E 
of the  &l/h ) versus a curves.  

E 

FE 
2. Separat ion  of   the  nonl inear  damage from t h e   l i n e a r   t y p e  a t  th ree  

c o l l e c t o r   c u r r e n t s   ( 2 . 8  ma, 5.0 ma, 10 ma).  Again, normalization of the 

A (1/+*) versus  curves  was required,  which i n   t u r n   r e q u i r c d   t h e  knowledge 

of t he  tb (2.8 ma), tb (5.0  ma), tb (10 ma) data.  

Since  during  the  previous  contract  (~As5-9878) only  the tb (10 ma) 

values  were required  hence known, the tb (2.8  ma), tb (5.0 m a )  values  have 

had t o  be  determined.  Actually, i n   o r d e r   t o   o b t a i n   s e l f - c o n s i s t e n t   d a t a   t h e  

t (10 ma) values  were redetermined as wel l .   Needless   to   say,  one could  not 

p r e d i c t   t h e   r e l a t i o n  between  the  different tb (IE) values.  tb (2 .8 ) ,  tb (5.01, 
b 
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tb (10) might or might  not  have  been different f rom  each   o the r   fo r   t r ans i s to r s  

of a g iven   type .   Trans is tors   wi th in  a given type were expec ted   t o  behave 

s imi l a r ly . .  

The fol lowing program was ca r r i ed   ou t   on  all t h e   t r a n s i s t o r s   i n v o l v e d  

to   ob ta in   r easonab ly  good c o n s i s t e n t  tb (2.81, tb (5.01, tb (10) data:  

1. h ( d b )   d a t a  were measured a t  mom tempera ture   wi th   Fa i rch i ld  Model 

7515s tester a t  many d i f f e ren t   cu r ren t   va lues .   (Typ ica l  set: IE = 0.7, 
0.8, 1.0, 1.2, 1.6, 2.5, 5.0, 10, 20, and 40 ma.) The frequency  of measure- 

ments, f ,  was s e l e c t e d   s u f f i c i e n t l y  low t o  produce  reasonably  high  gain  even 

a t  low c u r r e n t s   i n   o r d e r   t o  improve the  re la t ive  accuracy.   Frequency was 

usual ly  30 MHz. 

2. A computer  program  determined  the  gain-bandwidth  frequency, fT 
for   each   device  a t  all c u r r e n t s  from the  h (db)   versus   log   f requency   p lo ts  

i n  a rou t ine  manner ( i . e . ,  by drawing a 6 db/octave l i n e  from the  measured 

h (db)   point   and  reading  the  f requency a t  t h e   i n t e r s e c t i o n   o f   t h i s   l i n e   w i t h  

the 0 db l i n e ) .  

FE 

FE 

3. From t h e   t a b u l a t e d  f (I  ) da ta  for each  t ransis tor ,   the   computer  
T E  

prepared  l / f   versus  1/I p l o t s .  T E 

4. tb was determined  from  the f versus  I p l o t s   i n   t h e  usual -1  -1 
T E 

manner.  However, t h e   s t r a i g h t   l i n e  which was drawn a c r o s s   t h e  r r l ~ ~ r l  cur ren t  

I points   to   give  the  presumably  current   independent  tb (by   t he   i n t e r sec t ion   o f  
-1 t he   fT   ax i s )  was handdrawn  and  not  computer  constructed.  This  step was done 

on e a c h   p l o t   i n d i v i d u a l l y  after carefu l   examinat ion   of   the   pos i t ion   o f   the  

po in t s .  ( t b  data obtained by using  computer   constructed  r r least-squarelr   f i t ted 

s t r a i g h t   l i n e s  were genera l ly   use less . )  

P lo ts   o f   the   type   d i scussed  a n  shown i n   F i g u r e s  92 and 93. I n t e r e s t i n g l y ,  

t r a n s i s t o r  2N1711 exh ib i t s   t he   r rKi rk l l   e f f ec t ,  i . e . ,  t inc reases   w i th   cu r ren t  a t  

high  current   values .  
b 

As expected,   there  was found t o  be no se t   ru l e   t o   dec ide   be fo rehand  i f  t 

( 2 . 8 ) ,  t ( 5 . O ) ,  tb (10) d i f f e r e d  from each   o the r .   I n   gene ra l  some t r a n s i s t o r s  

d i d   e x h i b i t  common values  of t a t  two or more IE va lues ,  however many o t h e r s  

showed t h a t  t must  be determined  separately f o r  each I value. 

b 

b 

b 

b E 
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A computer   analysis   of   old data (NAS5-9578) y ie lded  damage cons t an t s  

a t  IE = 2.8 ma (Tables12  and131 from  which equivalence  values  between  the 

d i f f e ren t   t ypes  of r a d i a t i o n   c a n  be  determined. N e w  measurements o f  base 

transit time a t  2.8  and 10 ma were used i n   t h i s  work. Comparison  of  these 

equivalence  values   with  those  or iginal ly   obtained a t  10 ma showed  no sig- 

n i f i c a n t   d i f f e r e n c e  between  the two. It  is s i g n i f i c a n t   t o   n o t e  that these 

equivalence  values were not   s ignif icant ly   dependent   on emitter c u r r e n t  be- 

tween  2.8  and 10 ma thus a b roade r   va l id i ty  of the  equivalence  concept is 

v e r i f i e d .  

Fu r the r  data on the  val idi ty   and  updat ing  of  damage constants  and 

rad ia t ion   equiva lence   va lues   for   d i sp lacements  w i l l  be discussed as ex- 

tended gamma r a y   t e s t   r e s u l t s   ( s e c t i o n  2.5.2)  and  extended 15 MeV proton 

tes ts   (sect ion  2 .5 .3) .   Equivalence  values   in   sect ion  2 .5 .3  will r e f l e c t  

the  revised  displacement   values   for   cobal t -60 gamma ray tests and f o r  

15 MeV p ro ton   t e s t s .  
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Freq 

(Mc) 
f N  T r a n s i s t o r  

Type 

31613 

2N1711 

2N2219 

2 ~ 1 1 3 2  

2 ~ 2 8 0 1  

2N2411 

Table  12.   Transistor Damage Constants f o r  Proton Tests (IE = 2.8 ma) 

Test 24 
1 MeV 

K' 

2 -1 
:protons/cm ) 

7.0 x 

3.2 x d 4  

6.2 x 10-l2 

3.5 x 

3 .  G x 

3.6 x 

6.4 x 

1.2 x 

Test 26 
8-17 MeV 

K' 

2 -1 
protons/cm ) 

3.8 x 10-l~ 

1.9 x 

4.2 x 

2.2 x 10-l~ 

2.2 x 10 - 14 

6.8 x 

3.3 x 10-l2 

2.1 x 

2.1 x 10-l2 

4.7 x 

6.6 x 

1.8 x 

Test 27 
100 MeV 

K' 

2 
-1 

protons/cm ) 



Table 13. Transistor Damage Constants for Electron  Tests (Only f o r  
Linear Displacement Component) (I = 2.8 ma) E 

Transistor 
Type 

2~1613 

2N1711 

2~2219 

2N1132 

2~2801 

2N2411 

Test  21 
2.0 MeV 

Test 22 
1.3 MeV 

K' 

2.6 x 

9.0 x 10- 18 

3.3 x 10- 

3.8 x 10-l~ 

2.4 x 10-l~ 

18 

7.9 x 10 -18 

KD 

Test 23 
0.53 Mev 

K' 

1.7 x 10-l7 

7.1 x 10-l' 

2.9 x 10-l' 

1.8 x 10-l7 

1.8 x 

5.0 x 

KD 

1.39 x 10-l5 

7.8 x 10- 16 

1.46 x 1 0 ~ ~ 5  

3.8 x 10-l5 

5.5 x 

1.4 x 



2.5.2 Cobalt-60 Gamm Ray Damage Constants 

Four   each   of   the   fc l lowing   types   o f   t rans is tors :  2N1613, 2N1711, 2N2219, 

2N1132, 2~2801,   and 2N24lL were s e i e c t e d  from  phase I for  extended  Cobalt-@ 

gamma exposure.  The  extended  exposure of these  devices  was s t a r t e d  on  June 2, 

1967 f o l l o w i n g   f u l l   c h a r a c t e r i z a t i o n  by t h e   F a i r c h i l d  500 Series T r a n s i s t o r  

Tes t e r .   Th i s   cha rac t e r i za t ion   i nc luded :  a t  a c o l l e c t o r   v o l t a g e   o f  10 

vol ts   and emitter c u r r e n t s  a t  10 pa, 30 p, loO)la, 360 p, 1 ma, 3 ma, 10 ma, 

20 ma, and 40 ma; IEBo a t  VCE of 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0 
vol t s ;   and  I measurements f o r   d i f f e r e n t   t r a n s i s t o r   t y p e s  as i i s t e d  below. 

CBO 

I 2N1613 ,32219 I 

1.0 
5.0 

10.0 
20.0 
40.0 
60.0 
80.0 

loo. 0 

1.0 
5.0 

10.0 
20.0 
40.0 
50.0 
65.0 
80.0 

1.0 
3- 0 
7.0 

15.0 
20.0 
30.0 
40.0 
50.0 

T r a n s i s t o r s  were r e c h a r a c t e r i z e d   p e r i o d i c a l l y   u n t i l  a t o t a l   dose   o f  6 x 10 

r a d   S i  was absorbed. Dose rate information  and tes t  cond i t ions  were descr ibed 

i n   S e c t i o n  2.2.2. 

8 

Increases i n   l e a k a g e   c u r r e n t s  due to   the   ex tended   tes t ing  ( 6  x lo7 t o  
8 6 x 10 r a d   S i )  were not   appreciable .  The s i g n i f i c a n t  permanent  changes i n  

leakage  current  had occurred   pr ior   to   the   ex tended  tests as i n d i c a t e d   i n  

Table 14 and  Figure 94. 

An example  of the   resu l t s   o f   degrada t ion   of   cur ren t   ga in   dur ing   the  

extended  Cobalt-60 gamma ray tes ts  is shown i n   F i g u r e  35 for passive Z N l 7 l l  

t r a n s i s t o r s .  The l i nea r   d i sp l acemen t   l i ne  is shown on the   p lo t   for   campar ison  

purposes, as well as the  nonl inear  damage buildup a t  s e l e c t e d   c o l l e c t o r   c u r r e n t s  

of 10 p, 100 pa, 1 ma, and 10 ma for   the  extended tests. E a r l i e r  ?has€ I t e s t  
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Table 14. Leakam Currents for Gamma Expomure 

.. ~ ~~ 

Dose (rad Si) 
Vci Tvolta>- 

a 1 6 1 3  1 
22 
23 
24 
25 

2N1711 1 
20 
21 
22 
23 

a2219  1 
20 
21 
22 
23 

2N2801 1 
20 
21 
22 
23 

a1132 1 

. ~. ~ . " .. . .  

20 
21 
22 
23 

2N2411 1 
20 
21 
22 
23 

0.13 

0.05 

0.01 

Q.15 

0.06 

0.40 

L 

0.66 
0.45 
0.54 
0.54 

0.40 
1.02 
0.64 
0.58 

0.31 
0.21 
0.31 
0.28 

1- 57 
1.09 
1.21 
1.25 

0.96 
0.08 
0.09 
0.09 

0- 59 
0.60 
0.63 
0.57 

i 1.27 
1.02 
0- 95 
1.06 

4.41 

1.46 
1.46 

1.63 

0.62 
0.42 
0.70 
0.46 

5.60 
4.53 
5-03 
5-71 

1.07 
0.24 
0.22 
0.28 

0.52 

0.61 
0.58 

2.77 

0 

40 V 
- "- 

- 
1.11 

0.30 

0.25 

1.19 

0.22 

9.75 

z-x 
40 V 

2.62 
1.64 
2.10 
2.16 

1.11 
4.41 
2-37 
2.20 

1.43 
0.96 
1.51 
1.44 

L7.00 
~3.10 
L6.70 
L2.40 

6.75 

3-  47 
2.71 

L1.20 

3 . 4 0  
5-30 
?8.50 
?o. 50 

L 

6 x 10' r 
40 V 

4.22 
3.a. 
3.53 
3.60 

9.11 
6.41 
4.77 
4.21 

2.60 
2.15 
2.69 
3.99 

42.00 
41.00 
50.00 
50.00 

8.51 
3.38 

38-90 
3.64 

25.00 
24.60 
26.10 
26.60 
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data  is a l s o  shown on  the  f igure.   Linear  displacement damage dominated 

(a t  10 ma) only after the   devices   had   suf fe red   severe   nonl inear   ga in  

degradation.  Note  the  compression  of  the IC = 10 ma and IC = 1 ma damage 

curves i n  Figure 95 as displa4cement damage sets in,   showing less dependence 

on I for   displacement  damage t h a n   f o r   n o n l i n e a r  damage. C 

Verif icat ion  of   the  dominat ion of damage by displacements  (10 ma) 

a t  high  levels  of  exposure  can also be  seen i n  Figure 96. Slope  values 

of n = 1 indicate   bulk  displacement  damage while   the  s lopes  of  n = 1.7 a r e  

more typ ica l   o f   t ha t   obse rved   fo r   non l inea r   su r f ace   e f f ec t s   (Sec t ion   2 .3 .1 ) .  

From the  extended tes t s  i t  was evident   tha t   phase  I ex t r apo la t ions  for 

Cobalt-60 gamma ray  displacement damage needed   s ign i f icant   rev is ion .  

E a r l i e r   v a l u e s  were ex t r apo la t ed  from much lower levels   of   exposure where 

nonl inear  damage was still dominant. A comparison  of  the ear l ier  es t imates  

and  the  revised damage cons tan t s  from the  extended tes t s  are shown i n  

Table 15. Even with  extended  exposures  out  to 6 x 10 ( r a d   S i )  some 

t r a n s i s t o r   t y p e s  were still dominated by nonl inear  damage making  extrapola- 

t i o n  still necessary.  A rev ised   equiva lence   t ab le  is shown a t  the  end of 

Sec t ion  2.5.3. 

8 

Table 15. T r a n s i s t o r  Damage Cons tan t s   fo r  Gamma Ray Displacements 

r ans i s to l  
Type 

,341613 

2N1711 

2~2219 

2N1132 

2~2801  

a 2 4 1 1  

K' 
Phase I Estimate'Updated Phase I1 

7.1 x 1 0 - ~ 9  

9.0 x 1.8 x 10-lg 

2.5 x 1 0 - ~ 9  

7.5 x 3.0 x 10-lg 

1.7 x 10-l9 3.4 x 10-lg 

5.0 x 1.7 x 

7.7 x <5.0 x 

1 

Phase I Es t ima tc  

6.7 x 

2.7 x 

2.2 x 10 

1.3 x 10 

- 17 
- 16 

9.7 x 

2.7 x 10-l~ 

Jpdated  Phase I1 

2.35 x 10-l7 

1.33 x 

7.47 x 10- 

6.74 x 10-l7 

2.43 x 

18 

<2.04 x 
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2.5.3 Extended 15 MeV Proton   Tes t ing  

In the   o r ig ina l   t echnica l   p roposa l   (Ref .  1) t e s t s  were planned  to   cover  

a wide enough  proton  exposure  range  to  include damage regions  dominated  both 

by non l inea r   su r f ace   e f f ec t s  (low level  exposures)  and  displacement damage 

(high l eve l   exposures ) .  From those tests i t  was planned that t h e   r e l a t i v e  

cont r ibu t ions   o f   bo th   types  of damage could be assessed.  A t  the  time of 

con t r ac t   nego t i a t ion ,  however,  the 15 MeV p r o t o n   t e s t s  were  reduced t o  low 

l eve l   exposures   i n   o rde r   t o   co r re spond   w i th   l imi t a t ions  of ava i lab le   funding  

by NASA GSFC. Afte r   con t r ac t  award  exposure  tests were  conducted f o r  ab- 

sorbed  doses from approximately 10 t o  2 x 10 rad  Si .  3 4 

A s  p a r t i a l l y   r e v e a l e d   i n   S e c t i o n  2.4.4, ltAnomalous Bias Dependence 

for Proton Damage,” some ve ry   i n t e re s t ing   bu t   unexpec ted   r e su l t s  were observed 

f o r   t h o s e  tests. Those  f indings  demonstrated  the  need  for  resolving  whether 

or not   nonl inear  damage dominates  for low level  exposure  before  beginning  any 

combined t e s t  program. By mutual  agreement  between t h e  Boeing  technical 

leader   and   the  NASA GSFC t echnica l   moni tor ,   the   cont rac t  work s ta tement  was 

f o r m a l l y   a l t e r e d   t o   p r o v i d e   f o r   e x t e n d e d   p r o t o n   t e s t i n g  by delaying combined 

t e s t i n g   f o r   p o s s i b l e   i n c l u s i o n   i n  a la ter  program. 

In Sect ion  2.6, “ F e a s i b i l i t y  of Combined Tes t ing , “   t he   r e su l t s   o f  ex- 

tended t e s t s   a r e  viewed i n  terms of the   reso lu t ion  of proton damage mechanisms. 

I n  this s e c t i o n  data from the  extended  proton  testing is used t o   e v a l u a t e  

damage cons tan ts   for   d i sp lacement   e f fec ts .  15 MeV pro ton   l inear   d i sp lacement  

damage ( a t  I = 10 ma) is shown for NPN and PNP t r a n s i s t o r s  by t h e   s o l i d   l i n e s  

i n   F i g u r e s  97 and 98 respec t ive ly .  (The dashed lines i n   F i g u r e  97 i n d i c a t e s  

t h a t   d i f f e r e n c e s  between  gain  measured a t  f ixed  I and I a r e  small f o r  t h i s  

damage region) .   Displacement   values   found  for   the  extended  tes t ing  agree 

f a i r l y  well with  those  determined  in   the  phase I program as i n d i c a t e d   i n   t h e  

comparison  between  dash (10 ma) and   so l id  lines on  Figure 98. 

C 

C E 

A comparison  between  displacement  l ines  for  purposes  of  evaluating 

equivalences is shown i n   F i g u r e  98 for PNP devices.. A comparable   f igure  for  

NPN devices is s h o r n   l a t e r   i n   S e c t i o n  2.6 ,  where impl i ca t ions   fo r  combined 

r a d i a t i o n  tests are   d i scussed .  Based  on the   ove ra l l  results from Sect ion  2.5, 
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a se t  of rev ised   equiva lence   va lues   for   d i sp lacement   e f fec ts  is p r e s e n t e d   i n  

Table 16. During  the 1 MeV e lec t ron   nonl inear  tests, exposure   l eve ls  were 

extended i n  o r d e r   t o  better extrapolate   displacement   effects .   Those results 

ind ica t ed  that a shift i n  the   ex t r apo la t ed   d i sp l acemen t   l i nes   fo r   e l ec t ron  

damage t o  PNP'2N1132 t r a n s i s t o r s  be made in the  direction  of  agreement  between 

equivalences  obtained  for  NPN t r ans i s to r s   (Re f .  2 ) .  
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Table 16. Revised  Values  for  Displacement  Equivalences 

Alpha 
5 MeV 

Elec t ron  
1.3 MeV 

Proton 
15 MeV 

Neutron 
TRIGA 

Reactor 

Gamma Rays 
Cobal t-60 

P a r t i c l e  Type 
and  Energy 

Alpha+ 
( 5  MeV) 

Proton 
15 MeV 

Neutron 
(Reactor) 

E l e c t   m n  
1.3 MeV 

I ! 

4.1 1.4 x lo2 1 

9.0 x 10 4 2.5 x 10-1 9.0 x 10 3 1 3.3 x 10 1 

3.1 x l 1  7.1 x 10-3 2.8 X io  3 2.8 X 10' 

2.7 x 1.0 x 10 2 1 

1.0 x,10-2 2.7 x Gamma Rays 
Cobalt-60 1 

*Trans is tor  Cans o f f   f o r  5 MeV Alpha P a r t i c l e s  



2.6 FEASIBILITY OF  COMBINED  TESTING 

The c o n t r a c t   f o r   t h i s  program,  before  modification  for  extended  proton 

tes t ing ,   inc luded   the   requi rement   for   conduct ing  a s imultaneous  e lectron-  

proton exposure t e s t   t o   d e t e r m i n e   s y n e r g i s t i c   e f f e c t s   f o r   n o n l i n e a r  damage. 
Consequently, a combined test  s e t  up was assembled.   Before  s tar t ing  any com- 

b i n e d   t e s t s   t h e   t e s t   s e t u p  was used to   conduct   separate   e lectron  and  proton , 

exposures   of   t ransis tors .  The r e s u l t s  of  high rate Linac   e lec t ron  tests a t  

2.6 MeV energy  agreed well with  s teady state 1 MeV e l e c t r o n   r e s u l t s .  15 MeV 

p ro ton   t e s t s   r evea led  anomalous resu l t s   tha t   obscured   reso lu t ion  of the 

relat ive  importance of ion iza t ion   and   d i sp lacement   e f fec ts .  To overcome t h i s  

d i f f i c u l t y   t h e   c o n t r a c t  was modified i n  order   to   extend  proton test data t o  

higher  exposures  and  thus  determine  enough  about  the damage p r o f i l e  t o  

recommend a proper combined t e s t  program f o r   l a t e r  phase I11 studies.   Dif-  

ferences  observed  between  proton  and  electron damage i n d i c a t e s   t h a t  combined 

t e s t s  are imperative i n  order  to  perform  the  proper  assessment of r ad ia t ion  

damage t o   e l e c t r o n i c s  on boa rd   o rb i t a l  systems. 

2.6.1 Combined Test Setup 

De ta i l s  of t h e   r a d i a t i o n   t e s t   c o n f i g u r a t i o n ,   i n   p a r t i c u l a r   t h e  de- 

s c r i p t i o n  of separa te   p ro ton  and electron  exposures ,   were  discussed  in   Sect ion 

2 .2 .  The plan view f o r  combining  the  electron beam from the  Linac and 

protons from the  helium-deuterium  reaction is shown i n   F i g u r e  99. The axes 

of the  Dynamitron  and  Linac beam handling  systems  converge a t  an  angle   of  30 
degrees   i n s ide   t he   s ca t t e r ing  chamber.  The deutera ted   t i t an ium  ta rge t  is 

pos i t ioned  a t  the  convergence  point  (Figure 100) a t  an   angle  of  20 degrees 

t o   t h e  He3 beam j u s t  as i t  was i n   t h e   s e p a r a t e   p r o t o n   t e s t s .  Dosimetry for 

the  combined t e s t s  would  have  been  accomplished as i n   t h e   s e p a r a t e   p r o t o n  

and   e l ec t ron   t e s t s   ( s ee   Sec t ions  2.2.3  and  2.2.4). A photograph of an   overa l l  

view  of  the  combined beam se tup  is shown i n   F i g u r e  101. 

2.6.2  High Rate  Linac  Results 

Electron  exposure tests of  2Nll32  and 2N1613 t r a n s i s t o r s  were performed 

a t  2.6 MeV using  the  Linac  accelerator .   Exposure  condi t ions  in   Sect ion 2.2.3 

ind ica t ed   t ha t   h igh   i n s t an taneous  rates were  employed (pulsed beam) as compared 
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Figure 101: SIMULTANEOUS  EXPOSURE  BEAM  HANDLING  SYSTEM 



w i t h   e a r l i e r  1 HeV s teady  state e l e c t r o n  tests. The purpose  of  separate 

t e s t i n g  of t r ans i s to r s   u s ing   t he   L inac  was t o   v a l i d a t e   t h e  use of pulsed 

exposure a t  high rates t o  simulate low rate s t eady  state exposure  typical  

of space  radiat ion  environments .   Test   resul ts  were qui te   favorable  88 

i nd ica t ed  i n  Figures  102 through 105. L i n a c   r e s u l t s  on   pas s ive   2~1613  

t r ans i s to r s   o f   F igu re   102   can  be  compand  with  steady state exposure of 

Figure 18. The r e s u l t s  are es sen t i a l ly   equ iva len t .   Ac t ive  NPN t r a n s i s t o r s  

exposed t o  2.6 MeV e l e c t r o n s  show enhanced damage over   passive NPN t r a n s i s t o r s  

as in   t he   ca se   o f   s t eady  state electron  exposure.  Agreement  between the  

10 ?amp curve  of  Figure  82  and  the  active  curve  of  Figure 104 is c l e a r .  

It can be concluded that equiva len t   nonl inear  damage t o   t r a n s i s t o r s   ( a c t i v e  

or pass ive)  is obtained  independent  of  the  rate of electron  exposure.  Thus 

Dulsed  Linac  electrons  should be adequate   for   combinat ion  with  s teady  s ta te  

p r o t o n s   i n   f u t u r e   s y n e r g i s t i c  tests. 

2.6.3 Resolution of Proton Damage and the  Proposed  Synergistics  Test   Plan 

I n   o r d t r   t o   p r o p e r l y   p l a n  a combined test i t  was n e c e s s a r y   f i r s t   t o  

determine  the  re la t ive  importance  of   ionizat ion  and  displacement  damage over 

the   f luence   range   of   in te res t .  A t  the   end  of   the  or iginal ly   planned low 

fluence 15 MeV p r o t o n   t e s t  (2.9 x 10 Rad S i )  a nunber  of  apparent  incon- 4 

s i s t enc ie s   ex i s t ed   i n   de t e rmin ing   whe the r  damage was due t o  displacement or 

i on iza t ion .  Those incons i s t enc ie s  were as follows: 

Inconsis tent   with  normal   displacement   effects  

1. 

2. 

3. 

4. 

The  n va lues   in   D( l /$*)  BKIc(l’n - f o r  both NPN and PNP 

transis tors   corresponded  to   those  found f o r  i o n i z i n g   e l e c t r o n  

and gamma ray nonl inear  damage, i . e . ,  1.3 5 n 5 1.8. 

Values of  alpha  cutoff  frequency, transit t ime, or f  were 

inef fec t ive   in   normal iz ing   the   ga in   degrada t ion .  

Passive PNP t r a n s i s t o r s  were inore s e n s i t i v e   t o   p r o t o n  damage 

than were a c t i v e   t r a n s i s t o r s ,   s i m i l a r   t o   e l e c t r o n  or gamma 

ray nonl inear  damage. 

I so the rma l   f r ac t iona l   annea l ing   o f   t he  damage was s i m i l a r   t o  

nonl inear  gamma ray damage. (See  Figures 106 and  107. ) 

T 
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5. Damage showed a very large dependence on c o l l e c t o r   c u r r e n t  

(n   1 .7)   cons iderably   g rea te r   than  that observed i n  neutron 

displacement damage or i n   t h e  1 MeV proton damage observed 

i n  the  earlier phase I equivalence  study.  (See  Figure 108.) 

6. A l a rge   sp read   i n   a1132   dev ice   r e sponse  w a s  observed   typ ica l  

o f   nonl inear  damage from e l e c t r o n   t e s t i n g .  

Apparent   inconsis tencies   with  noma1  nonl inear  damage 

1. Damage appea red   t o  be l i n e a r   r a t h e r   t h a n   n o n l i n e a r   i n   p r o f i l e ,  

=.e., AI/% K Q 

2. The " l i n e a r "   d a m g e   l i n e   f o r   p r o t o n s   a g r e e d   f a i r l y  well with 

proton  equivalence  values   (a t  10 ma) from the NAS5-9578 study. 

3. Proton damage t o  pass ive  a1613 t r a n s i s t o r s  was g r e a t e r   t h a n  

that for   an   equiva len t   absorbed   dose  from e l e c t r o n s  or protons 

( ion iza t ion   equ iva lence   d id   ex i s t  however for PNP a 1 1 3 2  

t r a n s i s t o r s ) .  

4. A t  the  low exposure of 2.9 x 10 Rad S i   t h e r e  was as y e t  no 4 

tendency  for  the damage t o   s a t u r a t e .  

5. I sochrona l   f r ac t iona l   annea l ing  data d id  not   agree   exac t ly  

with gamma r ay  r e s u l t s   i n d i c a t i n g   t h e   p o s s i b i l i t y  of displace-  

ments.  (See  Figures  109  and 110. ) 

6 .  Proton damage t o   a c t i v e  NPN t r a n s i s t o r s  was l e s s   t h a n  that 
to   pass ive   t rans is tors ,   oppos i te  of t ha t   obse rved   i n   e l ec t ron  

or gamma ray  nonl inear  damage. 

Based  on these   i ncons i s t enc ie s  no  combined t e s t s  were  performed  since 

the  following dilemma arises i n   s e l e c t i n g  between  approach A and B. 

A. If the   p ro tons  cause nonl inear   sur face  damage then   t he   syne rg i s t i c s  

t e s t   s h o u l d  use equivalent  dose  and  dose  rates for both  the  e lectrons 

and  protons,   otherwise one  would expect one par t ic le   type   to   dominate .  

(This  approach would be wor th l e s s   i f   t he   p ro ton  damage were due t o  

displacements ,   s ince  an  equivalent  amount of e l e c t r o n  dose  would 

a l s o  be dominated by proton  displacements.)  
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B. If 15 UeV proton  damgo a t  low f luences  is due to   d i sp l acemen t s  

t h e n   i n  a s y n e r g i s t i c s  test  a much higher  dose  and  dose  rate  for 

e l ec t rons   ( s eve ra l   o rde r s  of magnitude)  should  be  used t o   d e t e r -  

mine i f   i o n i z a t i o n  can inf luence  displacement  damage, otherwise 

proton  displacements would dominate e lectron  dose as i t  dominates 

proton  dose  effects .   (This   approach is worthless  i f   t h e   p r o t o n  

damage is due to   "non l inea r "   su r f ace   e f f ec t s   s ince   t he   e l ec t ron  

dose  would then  dominate  the  proton  dose  and no s y n e r g i s t i c  

e f f e c t s  would  be expected.) 

Because  of this dilemma the combined t e s t s  were  postponed u n t i l  later 

and   ex tended   pro ton   tes t ing  was performed up to   an  absorbed  dose of 6 x 10 

Rad S i .  The r e s u l t s   o f   t h o s e   t e s t s  were  shown e a r l i e r   i n   F i g u r e s  51, 90, 97, 
and 98 as wel l  as now i n   F i g u r e s  111, 112,  and 113. The r e s u l t s  of  the  ex- 

t e n d e d   t e s t s   i n  no way removed any  of  the  inconsistencies  with  displacement 

damage, as l i s t e d ,   b u t   r a t h e r   s t r e n g t h e n e d  them. As an  example,  Figure 111 

shows t h a t   t h e   s t r o n g  dependence  of 2 ~ 1 6 1 3  damage on IC r e m i n s  similar t o  

s u r f a c e   e f f e c t s   ( i . e . ,  n 1.7) for exposures up t o  1.3 x 10 rad   S i .  Only 

above @at exposure   l eve l  is the re  a de f in i t e   i nd ica t ion   (w i th  n = 1 . 4  a t  10 ma) 

of  the  onset o f  the dominance  of  displacement damage a t  h igh   cur ren ts  for 

2 ~ 1 6 1 3   t r a n s i s t o r s .   F i g u r e   1 1 2  shows that f o r  2N1132 t r a n s i s t o r s   d i s p l a c e -  

ment damage appears  t o  be compet i t ive   wi th   ion iza t ion  damage a t  high  cur- 

ren ts   (10  ma) even a t  low exposures. 

5 

5 

Two of   the   apparent   incons is tenc ies   wi th   nonl inear   sur face   e f fec ts  

have  been  removed: 

1) Damage a t  high  exposures no longe r   appea r s   t o  be l i n e a r   f o r  

2 ~ 1 6 1 3   t r a n s i s t o r s   ( s e e   F i g u r e   1 1 3 ) .  

2)  There is a de f in i t e   i nd ica t ion   o f   t he   beg inn ing   o f   s a tu ra t ion  

of the  damage a t  h igh   exposures   for  2N1613 t r a n s i s t o r s   ( s e e  

Figure  113).  

Fur thermore ,   the   l inear  damage l i n e   f o r   p r o t o n   e f f e c t s  (a t  10 ma), as shown 

in Figure  112, still agrees  fairly well  with  the  phase I equiva lence   resu l t s .  

Finally,   anomalous  proton damage, i . e . ,  damage to   pas s ive  NPN t r a n s i s t o r s   b e i n g  

g r e a t e r   t h a n   t h a t   t o   a c t i v e  NPN or passive PNP devices  is not   on ly   incons is ten t  

w i t h   i o n i z a t i o n   e f f e c t s  b u t  a l so   wi th   d i sp lacement   e f fec ts .  
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Thus, it appears   that   the   gain  degradat ion  caused by 15 MeV protons 

most resembles  nonlinear damage ( ion iza t ion   i nduced   su r f ace   e f f ec t a ) .  

Based on th i s   assumpt ion ,  it is recommended t h a t  test  approach A described 

i n  Sec t ion  2.6.3 be  used in f u t u r e  combined t e s t a .   S i n c e  anomolous  proton 

damage does  not obey the  ionization  equivalence  concept  and  since  dependence 

on a c t i v e   b i a s i n g  is the   oppos i te   o f   tha t   observed  by e lec t rons ,  i t  is 

deemed highly des i rab le   to   conduct  combined protcxl-electron tests. 
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The rO8harCh work performed on this contract ha8 been reviewed and to 
the beat of our knowledge no new technology irr reportable. 
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4.0 CONCLUSIONS AND RECOHHENDATIONS 

Signif icant   conclusions  based on the  results of  this s tudy  are b r i e f l y  

summarized i n  this sect ion  a long  with  appropriate   recommendat ions  for   future  

s tudy  

4.1 CONQUSIONS 

1) Dependence  of Nonlinear Damage on Measurement Current 

In general ,   nonl inear  damage t o   p a s s i v e   t r a n s i s t o r s  when presented 

in t he  form of  &l/h) v e r s u s   p a r t i c l e  fluence (o r  dose)   resu l ted  i n  p a r a l l e l  

cu rves   fo r  a family of I values  a t  which is measured.  (The  reason  for 

this r e s u l t  is e x p l a i n e d   q u a l i t a t i v e l y  in Sect ion  2.3.1  and  does  not  apply  to 

t r ans i s to r s   ope ra t ed   ac t ive ly   du r ing   exposure . )  It was f u r t h e r   v e r i f i e d  that 
f o r   b o t h  electrons and  protons  the  current  dependence is as theore t ica l ly   ex-  

pected 

C 

where n is the  exponent i n  

IB I exp (qV& k T) 
BO 

Raytheon a 1 1 3 2  and 2N1613 t r ans i s to r s   bo th   had  a " s u r f a c e   e f f e c t s  n value"  of 

approximately 1.5, while F a i r c h i l d   t r a n s i s t o r s   o f   b o t h   t y p e s  had n values  

c l o s e r   t o  1.7 f o r   n o n l i n e a r  damage. T rans i s to r s  of bo th   reg is te red   types  for 

both  manufacturers  demonstrated a change i n  n value  toward n = 1 when d isp lace-  

ment damage began t o  dominate  surface damage. (15 MeV proton damage t o  

Fairchi ld   devices   shoved a s lope  of  n = 1.7 fo r   doses  up t o  1 x 10 Rad Si .  5 

2 )   S t a t i s t i c a l   S p r e a d   i n  Device  Response 

Devices  of  the same r e g i s t e r  number, bu t   d i f f e ren t   ba t ches   ( even  

between different   manufacturers)   general ly   shoved similar s e n s i t i v i t y   t o   r a d i a -  

t ion.   Devices  of  the same ba tch   genera l ly   degraded   in  a similar manner. 

I n t e r e s t i n g   d i f f e r e n c e s   i n   s e n s i t i v i t y  of damage were  observed fo r   dev ices   o f  

d i f f e ren t   da t e   codes  from the  same manufacturer. In g e n e r a l   f o r   b e t t e r  
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normalizat ion  of  damage f o r   d i f f e r e n t  date codes  of  the same manufacturer 

was obtaincd when  damage was examined i n  terms o f   r e l a t i v e   g a i n  loss, 

a w h m i ,   r a t h e r   t h a n   & l / h ) .  2N1613 Fairchi ld   devices   demonstrated 

l e s s   s t a t i s t i c a l   s p r e a d   i n   s e n s i t i v i t y   t h a n   d i d  Raytheon  devices. The gain 

loss of   Fa i rch i ld   devices  was i n  between that of the extremes of the  

Ra$theon ba tches .   S igni f icant ly   devices  from  one  of the  later date   codes 

proved t o  be the  most s ens i t i ve .  2N1132 t r a n s i s t o r s  had  approximately  the 

same statistical s p r e a d   i n  damage independent of the  manufacturer.  

) 

Active  devices were a l s o   t e s t e d   b u t   i n   s m a l l e r   l o t s .   T e s t  r e s u l t s  

i n d i c a t e  that t h e   s p r e a d   i n   t h e   r a d i a t i o n   s e n s i t i v i t y   o f   a c t i v e   d e v i c e s  is 

much g rea t e r   t han  that for   pass ive   devices .  

3)  Correlations  and  Empirical   Formulation 

Gain  degradation was ana lyzed   in   severa l   mathemat ica l   express ions  

t o   i n v e s t i g a t e   e m p i r i c a l   f o r a u l a t i o n s .  Although a simple power law 

A( 1/+) = constant  0 X O < x < l  

h o l d s   i n  some cases ,  i t  was general ly   only  over  a very  l imited  f luence range, 
i f  a t  a l l .  For act ively  biased  devices   during  exposure,   values   of  x > 1 were 

even  observed.   Correlat ion  s tudies ,   fur thermore,   appear  t o  i n d i c a t e   t h a t  

excess   base  current  11 is r e l a t e d  to I Consequently,  the  reduction 

o f   s t a t i s t i c a l   s p r e a d   u s i n g  a formula t ion   in   t enns   o f   re la t ive   ga in  loss 

would be expected. An empir ical   re la t ionship  of   the  fol lowing  form 

BX Bt 

was found t o   b e s t   f i t   t h e   e x p e r i m e n t a l  data over   the   fu l l   dose ,  D,  range up 

t o  and   i nc lud ing   s a tu ra t ion  damage, 
fS' 

4) Ionizat ion  Equivalence  for   Nonlinear  Damage 

The hypothes is   o f   ion iza t ion   equiva lence   for   nonl inear  damage t o  

p a s s i v e   t r a n s i s t o r s  was found t o  be v io la ted .   In   genera l   equiva lence  on the 

bas i s  of toda l   dose   appears   to   ho ld   for  X-ray, gamma ray,   e lectron  and  proton 

exposure  of  passive PNP transistbrs and  indeed  for   exposums of passive NPN 
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t r a n s i s t o r s  by a l l  except  protons.  An anomalous  exception t o   t h e   t o t a l   d o s e  

equivalence  concept   for  passive t r a n s i s t o r s  was obse rved   w i th   f a r   g rea t e r  15 MeV 

proton   nonl inear  damage t o  a1613 t r a n s i s t o r s .  

5 )  The Source  of  Nonlinear Damage 

The  problem of   the   source   o f   nonl inear  damage seems t o  narrow down t o   t h e  

f a c t  that the  re la t ive  importance  of   charge  accumulat ion  and  creat ion  of   inter-  

face s ta tes  under   the  var ious  bias   condi t ions  during  exposure  has   not   been 

thoroughly  studied  hence  resolved. Work c a r r i e d   o u t   i n   t h i s  area has been some- 

w h a t  fragmentary s o  far. I n   p a r t i c u l a r   t h e   r e s u l t s  by the   Fa i rch i ld   g roup  on 

passive  (only)  NPN t r a n s i s t o r s  and by Maier on  reverse  biased  (only) NPN 

t rans is tors   demonst ra ted   the  dominance  of t h e  new i n t e r f a c e  states over  the 

charge  accumulation.  (See  references 5 and 6 i n  App. 11.) The r e s u l t s   o f  

Boeing  in-house  research  on  act ive  and  passive,   normal   ( i .e . ,   gas   f i l led)   and 

evacuated   Fa i rch i ld  2N1613 t r a n s i s t o r s  showed,  on the   o ther   hand ,   tha t   the  

charge  accumulat ion  due  to   gas   ionizat ion  inside  the  can was the  pr imary  factor  

for the  enhanced  degradation  of  the  normal  active NPN devices.   Nevertheless  the 

pas s ive   gas   f i l l ed ,  as well as the  passive  and  act ive  evacuated  devices  seemed 

t o   i n d i c a t e   t h e  predominance  of  the  degrading  effect  of  the new i n t e r f a c e   s t a t e s  

over  that   of  the  charge  accumulation. A more de t a i l ed   desc r ip t ion   o f   t he  

Boeing work i, diven i n  Appendix 11. 
6) Act ive  Biasing  and  Lat in  Cube Analysis 

Act ive   opera t ion   dur ing   exposure   s ign i f icant ly   enhances   the   sens i t iv i ty  

of  NPN t r a n s i s t o r s   t o   e l e c t r o n  or gamma ray  induced  nonl inear  damage. Furthermore 

t h i s  enhanced damage depends  on  the  type of r ad ia t ion   caus ing   t he  damage although 

i t  does  not  depend on the rate of  exposure. 1 MeV e l e c t r o n  damage t o   a c t i v e  NPN 

t r a n s i s t o r s  is grea te r   than   tha t   caused  by a corresponding  absorbed  dose from 

Cobalt 60 gamma rays.  On t h e   o t h e r  hand, ac t ive   p ro ton  damage t o  NPN t r a n s i s t o r s  

is less than  passive  proton damage. 15 MeV proton damage t o   p a s s i v e   t r a n s i s t o r s  

was ac tua l ly   very   c lose   to   enhanced   (on   ac t ive   devices)   e lec t ron  damage providing 

a d e f i n i t e  anomaly i n   t h e   b i a s  dependence c o r r e l a t i o n s .  

The L a t i n  cube  computer  analysis  of  the  multifactor  experimental   design 

provided a determination  of  the weak i n t e r a c t i o n s  between the   t h ree  t e s t  variables--  

i n j ec t ion   cu r ren t ,   co l l ec to r   vo l t age ,   and   pa r t i c l e   f l uence .  While cross  dependences 

between cu r ren t  and  fluence or curren t   and   vo l tage  are c l o s e   t o   n e g l i g i b l e  a 

s t ronger   interdependence  between  col lector   vol tage  during  exposure  and  f luence 

( o r  dose) was observed.  Latin  cube  binomial  empirical  formulations for the  

separate  dependences  on  current,   voltage,   and  f luence were 
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9 1/2 - 0.1 IC + 0.01 I 

over   the  ranges  of  0.3 t o  9.7 ma, 1.6 t o  18.4 vol t s   and  3 x 10l1 t o  3 x 10 

e/crn2 ( f o r  NPN t r a n s i s t o r s ) .  

12  

7) Updating  of  Equivalence  Values  for  Displacements 

Equivalence  values  (from  early  phase I da ta)  were analyzed and 

found not t o  be s i g n i f i c a n t l y  dependent on emitter current  between 2.8 and 
10 ma. Thus, a b roade r   va l id i ty  of the  equivalence  concept was v e r i f i e d .  

Gamma rad ia t ion   tes t ing   ex tended   to   very   h igh   doses   p rovided   the  means for 

rep lac ing   ear l ie r   lower   dose   ex t rapola t ions   to   de te rmine  damage constants .  

The ex tens ion   of   p ro ton   tes t ing   to   h igh   exposures   a l so   p rovided   increased  

confidence in   equ iva lence  numbers p re sen ted   i n   Sec t ion  2.5. 

8) F e a s i b i l i t y  of  Combined Tes t ing  

The in t eg ra t ed   t e s t   s e tup   (2 .9  MeV e l ec t rons  from the  Linac 

and 15 MeV protons from the Helium 3 - deuterium  reaction  using  the 

Dynamitron)  worked qu i t e   we l l   i n   s epa ra t e   e l ec t ron   and   p ro ton   t e s t s .  The 

t r a n s i s t o r s  were  exposed i n   t h e  same pos i t i on  on the  sample  holder for each 

tes t   ind ica t ing   tha t   s imul taneous   exposure  a t  the   des i r ed   r a t e s  is feas ib le .  

Resul t s  from the   separa te   2 .9  MeV Linac   t e s t   (pu l sed )   ag reed   ve ry   we l l ,   f o r  

b o t h   a c t i v e   a n d   p a s s i v e   t r a n s i s t o r s ,   w i t h   e a r l i e r  r e s u l t s  from the 1 MeV 

e l e c t r o n  Dynamitron t e s t   ( s t e a d y   s t a t e )   i n d i c a t i n g   t h a t   s i m u l a t i o n  by the  

Linac was feas ib le .   Extended   pro ton   tes t ing   ind ica ted   tha t  15 MeV proton 

damage t o  NPN t r a n s i s t o r s  (2N1613) is dominated by nonl inear  damage ( a t  
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low c u r r e n t s  up t o  10 ma and fo r   exposures  up t o  1 x 10 Rad S i ) .   T h i s  

damage vas anomalous, however, i n  that ac t ive   dev ices  were damaged less 

than   pass ive   devices  by pro tons   (oppos i te   to   e lec t ron   induced  damage). 

This  result would  seem t o   i n d i c a t e  that simultaneous  e lectron  and  proton 

e x p o s u r e s   ( s y n e r g i s t i c ) ,   t y p i c a l   o f   e x p o s u r e   o f   s p a c e   s y s t e m s   i n   t h e  Van 

Allen belts,  would be expec ted   t o  show nonadd i t ive   r e su l t s  (on the  

basis o f   t o t a l  dose  deposited). 

4.2 RECOHMENDATIONS 

5 

It appears   that ,   based on conclusions l i s t ed  i n   S e c t i o n  4.1, the 

following  recommendations  should be  implemented i n  a future  phase I11 

program i n   o r d e r   t o   a l l o w   f o r   c o m p u t e r i z e d   p r e d i c t i o n   o f   e f f e c t s   i n  

t r a n s i s t o r s   c a u s e d  by exposure  to   space  radiat ion  of   complex  spectra .  

1) Based  on t h e   r e s u l t s   o f   s t a t i s t i c a l   t e s t s  on p a s s i v e   t r a n s i s t o r s ,  

i t  is recommended t h a t   i n   t h e  procurement  of t r a n s i s t o r s   f o r   f u t u r e   t e s t i n g  

impor tan t   sur face   p roper t ies  be i d e n t i f i e d ,   s p e c i f i e d ,   a n d   c o n t r o l l e d  

during  manufacture.   This  should be  done i n   o r d e r   t o   g e n e r a t e  data that 
can be ex tended   to  a g e n e r a l i z a t i o n   o f   e f f e c t s   i n   o t h e r   t r a n s i s t o r   t y p e s .  

Furthermore, i t  is recommended that a s t a t i s t i c a l  test  of a c t i v e l y   b i a s e d  

t r a n s i s t o r s  be  conducted similar t o   t h a t   f o r   p a s s i v e   t r a n s i s t o r s .  

2) Fu r the r   i nves t iga t ion   o f   t he   empi r i ca l   fo rmula t ion   appea r s   t o  be 

des i rab le   to   de te rmipe   whether   an   express ion   involv ing   the   hyperbol ic   t angent  

has general v a l i d i t y   f o r   d i f f e r e n t   t y p e s  of devices  and  whether a t h e o r e t i c a l  

b a s i s   e x i s t s .  When a formulation is va l ida ted  i t  will provide a b a s i s   f o r  

s tandard   eva lua t ion  of s u r f a c e   e f f e c t s  damage c o n s t a n t s   f o r   d i f f e r e n t   t y p e s  

of t r a n s i s t o r s .  

3)  The gene ra l i za t ion  of the  proton  violation  of  the  concept  of  dose 

equivalence for exposure  of NPN t r a n s i s t o r s   s h o u l d  be explored by proton 

i r r a d i a t i o n   o f   o t h e r  t y p e s  of NPN t r a n s i s t o r s .  

4) It is recommended that s t u d i e s   s h o u l d  be conducted  to  determine 

the  re la t ive  role   of   charge  bui ldup  and  the  creat ion  of  new i n t e r f a c e   s t a t e s  

i n  producing  nonlinear  gain  degradation. 
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5 )  The  anomalous  dependence  on b i a s   cond i t ion   fo r   p ro ton   non l inea r  

damage t o  NPN t r a n s i s t o r s  was not  expected  and  should be s t u d i e d   f u r t h e r  i n  
o r d e r   t o   p r o v i d e  insight i n t o  damage mechanisms. A d e t a i l e d  bias s tudy  

(d i f f e ren t   i n j ec t ion   l eve l s   and   vo l t ages   du r ing   exposure )   ough t   t o  be 

conducted   for   p ro ton   e f fec ts  as have already  been  performed for e l e c t r o n  

and g a m m a  ray  exposure. 

6 )  It is f i n a l l y  recommended t h a t   t h e  combined t e s t s   o r i g i n a l l y  

p l anned   fo r   t h i s  program be included i n  a fu ture   s tudy .  The d e s i r a b i l i t y  

o f   s y n e r g i s t i c  tests t o  determine  the method of computer   integrat ion  of  ef- 

fects from sepa ra t e   pa r t i c l e   t ypes   and  energies has i nc reased  because of 

the   l ack   of   ion iza t ion   equiva lence   be tween  pro tons   and   e lec t rons .  
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APPENDIX I 

TIiEoRETICAL BACKGROUND 

OF THE SOURCE OF NONLINEAR  DAMAGE 

"he fol lowing is a b r i e f   r ev iew  o f   t he   e f f ec t s   o f   i on iz ing   r ad ia t ion   on  

oxide   pass iva ted   S i   sur faces   and  on t he   subsequen t   phys i ca l   even t s   l ead ing   t o  

p l ana r   t r ans i s to r   deg rada t ion .   Th i s   s t ep  is necessary  because  our  experimental 

results will be discussed and analyzed  against   th is   background,  

A l .  Ef fec ts   o f   Ion iz ing   Radia t ion  on  Oxide P a s s i v a t e d   S i   S u r f a c e s  

According t o  numerous i n v e s t i g a t o r s  an o x i d i z e d   S i   s u r f a c e  when exposed t o  

ion iz ing   i r rad ia t ion   undergoes   the   fo l lowing   changes :  (lo)* 

i )   P o s i t i v e   c h a r g e  is  accumulated  within  and  sometimes on t h e   S i 0  

i i )  New energy   leve ls  are int roduced  into  the  forbidden band o f   S i  
2' 

at t h e  Si-SiO, i n t e r f a c e .  In s h o r t ,  new " i n t e r f a c e   s t a t e s "  are created.  

Let us discuss   the   phys ics   o f   these  two e v e n t s   b r i e f l y   i n  turn: 

i )  Physical  origin  of  the  accumulated  charges and the i r   bu i ldup   wi th   dose :  

The accumula t ion   of   pos i t ive   charge   wi th in   the   S i02   in   the   p resence   o f  

a u n i f o r m   e l e c t r i c   f i e l d   a c r o s s   t h e   o x i d e   ( d u r i n g   i r r a d i a t i o n ) ,  is q u i t e  satis- 

fac to r i ly   exp la ined  by  Mitchell(''\ H i s  model  assumes tha t   ho le -e l ec t ron   pa i r s  

are c r e a t e d   i n   t h e   S i 0  by t h e   r a d i a t i o n   a n d   t h a t  some o f   t h e   e l e c t r o n s   t h u s  

c rea ted   d r i f t   ou t   o f   the   S i02   layer   under   the   ac t ion   of  an a p p l i e d   p o t e n t i a l  

across the   oxide,  VG, while   the  corresponding  holes  become trapped. The 

a n a l y s i s   p r e d i c t s  1) a dependence  of  charge  buildup  on  radiation  dose D, 

2 

References 10 - 18 of Appendix I are l i s t e d   i n   S e c t i o n  5.0. 
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approximately  of  the form 1 - exp(-Pi>)  where p is a material dependent 

constant;   2) a l i n e a r  dependence  of  the  charge  buildup a t  s a t u r a t i o n  on VG, 
f o r   b o t h   p o l a r i t i e s   o f  VG; and 3) the  dependence  of  the  charge  buildup on 

t h e   t o t a l  dose  absorbed  and  not on t h e   r a t e  a t  which the  dose was mceived.  

Experiments by Mitchell   himself as wel l  as by o the r s  on MOS s t r u c t u r e s  

( N O T  on b ipo la r   t r ans i s to r s )   suppor t   t he   t ype  of charge  buildup  process' 

p red ic ted  by the  equat ion 1 - exp(-@) . We w i l l  a l s o  make a n   a t t e m p t   t o  

c o r r e l a t e  our gain  degradation  vs.   dose  curves  with  the  predicted  charge 

buildup  vs.  dose  relation. 

Another  important  case we shou ld   t ry   t o   unde r s t and  is the  experi-  

mentally  observed  posit ive  charge  accumulation  within  the Si02 when t h e r e  is 

no e l e c t r i c   f i e l d   a c r o s s   t h e   o x i d e   l a y e r   d u r i n g   i r r a d i a t i o n  (VG = 0). Unfor- 

tuna te ly   there  is no sa t i s fac tory   t rea tment   account ing   for   the   charge  accumula- 

t ion  under  zero bias condi t ions.  Only some t e n t a t i v e   i d e a s  have  been  proposed 

so far. (11 1 

An understanding  of   charge  col lect ion  the  Si02  surface  of  a p lana r  

t r a n s i s t o r  is re l a t ive ly   ea sy .  It occurs  only when the   co l l ec to r   base   j unc t ion  

is reverse   b iased   dur ing   i r rad ia t ion .  It is due t o   t h e   i r r a d i a t i o n   i n d u c e d  

ion iza t ion   o f   t he  gas with in   the   t rans is tor   can   and   the   subsequent   co l lec t ion  

of   the   pos i t ive   ions   over   the  base o r   t h e   c o l l e c t o r  by t h e   e l e c t r i c   f i e l d  

e x i s t i n g  between  the  can  and  the  base  (the  can is connected t o   t h e   c o l l e c t o r ) .  

i i )   P h y s i c a l   O r i g i n  of the   In te r face   S ta tes   and   Thei r   Bui ldup   wi th  Dose: 

A t  the   present   t ime  there  is no theo re t i ca l   t r ea tmen t   p red ic t ing   t he  

func t iona l  form  of  buildup of n e w  i n t e r f a c e   s t a t e s   w i t h   d o s e ,   l i k e   t h e  one 

worked out  for  charge  accumulation. The primary  reason is probably that even 

t h e   i d e n t i t y   o r   t h e   p h y s i c a l  origin of the   de fec t s   r e spons ib l e   fo r   t he   i n t e r f ace  

s ta tes ,   bo th   o r ig ina l   and  new, is in   ques t ion .  Some workers  claim that t h e  new 
states are due to   the   b reakup  of  Hydrogen-Si  bonds a t  the   i n t e r f ace  by the  

i r r a d i a t i o n .  Hence, t he   s t a t e s   a r e   i ndependen t  of the  accumulated  charges 

w i t h i n   t h e   o x i d e .   O t h e r   r e ~ e a r c h e r s ( ~ ~ ) p r o p o s e   t h a t   t h e   i n t e r f a c e  states a r e  

due t o  some p o s i t i v e  - and  negat ive  charges   located  in   the  oxide  within a c e r t a i n  

d is tance  from the  Si-Si02 in te r face .   There   a re  number of val id   arguments   for  

(12) 
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o r   a g a i n s t   e i t h e r   p r o p o s i t i o n .  It is v e r y   l i k e l y   t h a t   t h e r e   a r e   s e v e r a l  

sources   of   the   or iginal   and  the new i n t e r f a c e   s t a t e s ,   i n c l u d i n g   t h e  two 

ideas   presented.  

For  the  purpose  of this r e p o r t ,  we conc lude   t ha t   t he   c r ea t ion   o f  

new i n t e r f a c e   s t a t e s  1s a fact ,  a l though  the   phys ica l   o r ig in   o f   the   s ta tes  

is still uncer ta in .   In   any   case  i t  is shown experimental ly  that the  bui ldup 

of new states wi th  4ose w i l l  a l s o  go i n t o   s a t u r a t i o n   n o t   u n l i k e   t h e   b u i l d u p  

of pos i t ive   charges .  It  is claimed,  however, that the  buildup  of  the new 

s t a t e s  is independent  of  the  applied  gate  bias during i r r a d i a t i o n   i n  MOS 
s t r u c t u r e s .  (14) 

A2 o Degradation  of  Transistor  Parameters 

Next, we would l i ke   t o   d i scuss   t he   expec ted   deg rada t ion  of a pass iva ted  

p l a n a r   t r a n s i s t o r   i n  terms of  the  surface  changes  caused by i o n i z i n g   i r r a d i a -  

t ion   p resented   prev ious ly .  The two main degradat ions we are  concerned  with 

a r e   t h e   i n c r e a s e  of ICBo and  the  decrease  of  hm. To be more general ,  we 

will t a l k   a b o u t   t h e   i n c r e a s e   i n   t h e   r e v e r s e   c u r r e n t ,  IR. Also,   instead  of  

the  degradat ion of h m  w e   w i l l  d i scuss   the   increase  of the  base  current ,  IB. 
These l a t t e r  two events   are   equivalent   because 

where 

ICE0 = (-1 I C  x Icm 

IB 

Since 

i n  IB 

IB i n  

I changes  very l i t t l e   d u r i n g   i o n i z i n g   i r r a d i a t i o n  it is the   i nc rease  

which is pr imar i ly   respons ib le   for   the   ga in  loss.  
C 

Now  we wish  to  f ind   ou t   t he   con t ro l l i ng   va r i ab le s   o f   cu r ren t s  I and R 
orde r   t o   a s ses s   and   unde r s t and   t he   e f f ec t  of the  charge  accumulation 

and  the  creat ion of new i n t e r f a c e   s t a t e s  on the  appropriate   var iables   hence 

on  currents  I and IB. R e i t e r a t i n g  some o f   t h e   r e s u l t s  of semiconductor 

device  .physics i t  is well e s t ab l i shed  that i n  terms of t h e i r   p h y s i c a l  

o r i g i n  I and IB are given by: 

R 

(15,) 
R 



and IB = I: = Irec 
i 

i i i 

The equations  above t e l l  us first tha t   bo th  I and I are made up o f   s eve ra l  
i i d i f f e r e n t  components  designated as I and IB, each component having a d i f f e r e n t  
R 

R B 

s p a t i a l   o r i g i n   i n   t h e   t r a n s i s t o r .  The reg ions   in   ques t ion   a re :   bu lk   o f   the  

emi t te r   and   of   the   base ;   sur face   o f   the  emitter and  of  the  base;  bulk  of  the 

junc t ion   t r ans i t i on   r eg ion ;   su r f ace   o f   t he   t r ans i t i on   r eg ion ;   channe l   ( i n -  

vers ion)   region,  i f  present .  (The appropr ia te  components o r i g i n a t i n g  a t  the 

surface  of   the  junct ion will be designated as Is s s  
B' IR* Ire=* gen Is .) The re- 

la t ive   impor tance   o f   these   reg ions   in   cpnt r ibu t ing   to  I o r  I depends on 

many f a c t o r s   i n c l u d i n g   t h e   i n j e c t i o n   l e v e l   ( f o r   I B ) .  A s  an  example, i t  is 

the   su r f ace   o f   t he   t r ans i t i on   r eg ion  which is t h e  most impor t an t   i n   de t e r -  

mining  the  value  of IB thus   the   cur ren t   ga in  a t  low in j ec t ion .  More will be 

sa id   about   the   empir ica l   equa t ions   represent ing   the   d i f fe ren t  I components 

i n   s e c t i o n  A30 

B R 

B 

It is a l s o  shown i n  EquationA(2) t h a t   t h e   s e p a r a t e  components can be 

ident i f ied   wi th   thermal   genera t ion   ( I i  ) and  recombination  (Ii  ) cur ren t s  

respec t ive ly  as to   the i r   phys ica l   o r ig in .   Equat ionsA(2)   then   s imply   express  

t h e   f a c t   t h a t   i n  a g iven   reg ion   of   the   t rans is tor  a thermal   generat ion  current  

w i l l  r e s u l t  whenever the   t hena l   gene rac lon   r a t e   o f   ho le -e l ec t ron  pairs  is 

made excessive  over  the  recombination rate of those  pairs .  (The thermal 

generat ion is due to   the   e lec t romagnet ic   rad ia t ion ,   ca l led   l ' thermal   rad ia t ion" ,  

p r e s e n t   i n   a n y  material a t  temperature  T.)   Similarly,  a recombination  current 

will r e s u l t  whenever the  recombination rate becomes excessive  over  the  genera- 

t ion   ra te .   In   thermal   equi l ibr ium  these  two r a t e s   a r e   e q u a l  of course,   but  

by ex te rna l  means (e.g.  reverse  bias,  forward bias, i l luminat ion. .  . ) the  

balance  can  be  destroyed  and one ends up e i the r   w i th   cu r ren t   sou rces   fu rn i sh ing  

the  I o r   w i th   cu r ren t   s inks   r ep resen t ing  I 

gen r e c  

R B *. 
By taking  into  account  the  fact   that   according  to  the  Shockley-Read-Hall  

theory  the  generation  and  recombination  of  hole-electron  pairs  takes  place  through 

some energy  levels   located  in   the  forbidden  energy  band,   serving as "s tepping 

s tones t t   f o r   t he   pa r t i cu la r   p rocess ,  we can now list the   va r i ab le s   con t ro l l i ng  I R 
and IB. 
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where 3 is the  recombination or gene ra t ion   cu r ren t   dens i ty   i n  a given 

reg ion   of   the   t rans is tor   (hence  Jr i i  = IB and J = IR). By wr i t ing  J i i  
g rg 

i n s t e a d  of J and J we want t o  emphasize  the  intimate  relation  between J 

and J s ince   t he  .same energy   leve ls   se rve  as s t e p p i n g   s t o n e s   f o r   e i t h e r  t h e  

recombinat ion  or   the  generat ion  process .  

rg 

r f3 r 

g 

Nt: 

no' Po: 

T: 

V: 

n, P: 

Density  of  energy  levels  in  the  energy  gap  promoting  the  generation 

and  recornbination; E is t he i r   ene rgy   pos i t i on ;  

e lectron  and  hole   capture   cross-sect ions  respect ively 

Equi l ibr ium  e lec t ron   and   ho le   concent ra t ions   in   the  bulk 

Temperature 

Applied  voltage 

E l e c t r o n   a n d   h o l e   c o n c e n t r a t i o n s   i n   t h e   p a r t i c u l a r   r e g i o n   i n   q u e s t i o n  

t nee,, CTh are the  

The e x p l i c i t   f u n c t i o n a l  form  of Ji is somewhat d i f f e r e n t   i n   d i f f e r e n t  

r eg ions   o f   t he   t r ans i s to r  i t  is a l s o   d i f f e r e n t   f o r  J and J ( i . e .   f o r  I and 

I:). A t  t h e   s u r f a c e   o f   t h e   t r a n s i t i o n   r e g i o n   f o r   b o t h  Js and Js the  dependence 

on Nt  is l i n e a r .  The  dependence  on  n  and  p is much more complicated,   containing 

hyperbolic  cosine  functions.  J will have a m a x i m u m  when n = p  n  exp(q]VFI/2KT) 

and J has a maximum  when n, p << ni i.e. f o r  a depleted  surface.  n is the  

Ln t r in s i c  c a r r i e r   c o n c e n t r a t i o n  , VF is the   appl ied   forward   b ias .   Inc identa l ly ,  

the  semi-empir ical   expressions  for   (J  ) and  (Jg)max  are r max 

rg  i i i 
r g B 

r g 

S 

s r i 

g i 

S S (16) 

where So has  been  defined as the  surface  recombinat ion  veloci ty   of  a depleted 

sur face .  It is p ropor t iona l   t o   t he   dens i ty   o f   t he   i n t e r f ace  states. (Actual ly  

So - - Smax here   s ince   the  n << n.   condi t ion made S reach its maximum value 

in   t he   r eve r se   b i a sed   ca se .  Of course So is still a funct ion  of N t ,  Et, gel, 
s' ps 1 

c h *  T, Po as l i s t e d   i n  EquationA(3).)  Also, 
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It is s i g n i f i c a n t   t o   n o t e   t h a t   s u r p r i s i n g l y   ( J s >   i . e .  is g max 
independent  of  the  reverse  voltage i n  EquationA(4). 

Another i n t e r e s t i n g   r e s u l t  comes by t a k i n g   t h e   r a t i o  of  EquationsA(5) 

andA(4) 

1 .e .   the   ra t io   of   ( I i )maJ(Is)  is a constant  a t  a given  forward  bias 

and  temperature.  Consequently i f ,  f o r  example,  the maximum surface  generat ion 

cur ren t ,  (Qmax, i nc reases  by a f a c t o r  of two because  of new i n t e r f a c e   s t a t e s  

then so does  approximately  the m x i m u m  surface  recombinat ion  current ,  

(Hence the  will a l so   dec rease  by a f a c t o r   o f  two.) S imi l a r   app rox imte  

r e s u l t s   a r e   o b t a i n e d  by t ak ing   t he   r a t io s  Id3 f o r   o t h e r   c u r r e n t  components, 

s ign i fy ing  a c l o s e   r e l a t i o n  between  them,  although  the r a t i o   i n   t h o s e   c a s e s  

will depend on the   r eve r se   b i a s ,  VR, as well. 

R max 

i i  
R 

Having  found the   va r i ab le s   con t ro l l i ng  I and I i n  EquationA(3) we can B R 
now discuss   the  effect   of   the   charge  accumulat ion  and  of   the new i n t e r f a c e  

s t a t e s  on these   cu r ren t s   i n   t e rms   o f   t he i r   va r i ab le s .  

The in t roduct ion   of   the  new i n t e r f a c e  states will increase   the   dens i ty  

of  the  recombination - gene ra t ion   l eve l s ,  N t ,  i n  EquationA(3).  Consequently 

both IR and I w i l l  be  enhanced s i n c e   t h e i r   s u r f a c e  components Is and IR B B 
a re   increased   l inear ly   wi th  N t .  Although  the  energy  posit ions  and  respective 

capture   cross-sect ions of the new l e v e l s   m y  be d i f f e r e n t  from those  of  the 

l e v e l s   o r i g i n a l l y   p r e s e n t ,  i t  is an  expe r imen ta l   f ac t   t ha t   t he  n e w  energy 

S 
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levels   themselves   are   very  eff ic ient   recombinat ion-generat ion states. It 

should  be  pointed  out that whenever IB is a f f e c t e d   s e r i o u s l y  as the  case 

here ,   then  the gain degradat ion is most s i g n i f i c a n t  a t  low i n j e c t i o n   l e v e l s  

where usua l ly  IB 2 Is even   before   i r rad ia t ion .  

s 

B 
The effect of   the   charge   accumula t ion   (e i ther   wi th in   o r   on   the   S i02  

or both)  on I and I i n  terms  of t h e i r   v a r i a b l e s  will be  somewhat d i f f e r e n t  

i n  the   fo l lowing   ca ses   t he re fo re   t r ea t ed   s epa ra t e ly   i n   t u rn :  
B R 

i) No i nve r s ion ,   on ly   dep le t ion   o f   t he   subs t r a t e   S i   occu r s .  The 

charge  accumulation w i l l  modify  n  and p a t  the   su r f ace   o f   t he   t r ans i t i on  

region (n ) i n  EquationA(3) by changing   the   sur face   po ten t ia l   hence  Jr o r  

Js will be modified. I and I may o r  may not   reach maximum as a funct ion  of  

t h e   s u r f a c e   p o t e n t i a l   ( t h u s  n and p ) depending upon the   ex ten t   o f   dep le t ion  

of   the   subs t ra te .  

S 
s' ps  

S s 
g B R 

S S 

i i )   I n v e r s i o n   o f   t h e   s u b s t r a t e   S i   o c c u r s ,   t h u s  a junc t ion ,   ca l l ed   t he  

# ' f ie ld   induced  junct iont1,  is formed. Th i s   ca se   has   t o  be   d iv ided   in to   the  

f o l l o w i n g   t h r e e   s u b c a s e s :   ( I n   t h e   f i r s t  two it is assumed that t h e   e x t e n t  

o f   i nve r s ion  is no t   su f f i c i en t   t o   cause   " channe l "   fo rma t ion   d i scussed   i n  $1 
cl) There is no breakdown ac ross   t he   f i e ld   i nduced   j unc t ion   du r ing  

app l i ed   b i a s  : 

The  two new regions which a f f e c t  I and IR i n   t h i s   i n v e r s i o n  B 
case   a r e   t he   su r f ace  of t h e   i n v e r s i o n   l a y e r   a n d   t h e   b u l k   t r a n s i t i o n   r e g i o n   o f  

the   f ie ld   induced   junc t ion .  However, the   e f fec t   o f   the   sur face   decreases  

rapidly  with  surface  inversion  and will be  negl igible   under   large  inversion.  (17) 
(Since Js and Js as func t ions   o f   t he   su r f ace   po ten t i a l   have   a l r eady   pas sed   t he i r  

m a x i m u m  when t h e   i n v e r s i o n   s e t   i n . )  On the   o ther   hand ,   the   bu lk   t rans i t ion   re -  

g ion   of   the   f ie ld   induced   junc t ion  will serve  as an   ex t ra   source   o f  current  
f o r   e i t h e r  I o r  IB thus   con t r ibu t ing   t o   t he i r   deg rada t ion .  

r g 

R 
f l )  There is a vol tage breakdown  of  the f i e ld   i nduced   j unc t ion  

dur ing   appl ied   b ias :  

The  breakdown  can be e i t h e r   a n   a v a l a n c h e  or a 7ener breakdown 
(18 1 

depending upon the  surface  doping  of  the  inverted  substrate.   Avalanche 

occurs below approximately 3 x 10l8 'Zener breakdown or   tunnel ing   occurs  



. "" 

when the  surface  doping is approximately  between 3 x 10l8 and 8 x 10l8 ~ m ' ~ .  

E i t h e r  of these  breakdowns give rise t o  a tremendous  increase i n  I I n   a d d i t i o n ,  

t he   t unne l ing   can   s ign i f i can t ly   i nc rease  I hence  degrade - both a t  - low and high 

i n j e c t i o n   l e v e l s .  T h i s  e f f e c t ,  when i t  occurs ,  is so d r a s t i c  that it  over r ides  

every  other  cause of ga in   degrada t ion   espec ia l ly  a t  h i g h   i n j e c t i o n   l e v e l s .  

R' 
B 

7) o r  ohmic path  formation between the  contacts  of  the 

base-emit ter ,   base-col lector ,   emit ter-col lector .  

T h i s   e v e n t   s p e c i f i c a l l y   r e f e r s   t o   t h e   c a s e  of base  inversion  of  

s u c h   a n   e x t e n t   i n   a r e a   t h a t  a d i r e c t  ohmic path  between  the  different   terminals  

of   the   t rans is tor   deve lops .  Depending  upon the   s ize   o f   the   channel   the   resu l t ing  

i n c r e a s e   i n  I o r  IcEo may completely  disrupt   fur ther   device  operat ion.  ( F o r  

t una te ly   t he   e f f ec t  of a channel  across  the  base-emitter  junction  alone is not 

too   se r ious   for   ga in   degrada t ion   because  this junc t ion  is forward  biased  and 

the  channel   path is usua l ly   h ighly   res i s t ive . )  

CBO 

Since  the  accumulated  charges i n   t h e   S i 0   a r e   p o s i t i v e  it follows 

tha t   the   deple t ion   and   invers ion   occurs  on a P type  substrate   only.   This  is the 

base  of  an NPN t r a n s i s t o r  and  the  emit ter   and  col lector  of a PNP t r a n s i s t o r .  

Therefore,  a d i f f e ren t   r e sponse  is expec ted   t o   i on iz ing   i r r ad ia t ion  by NPN 

and PNP t r a n s i s t o r s .  The d i f f e rence   i n   behav io r  is fu r the r   ampl i f i ed  by the  

f a c t  that the  surface  doping of the base and   emi t te r   reg ions  is q u i t e   d i f f e r e n t .  

The emitter region is usual ly   very  highly doped (> lo2' ~ m - ~ ) ,  consequently 

only a very  narrow  region i n   t h e   v i c i n i t y  of   the  junct ion,  where the re  is a 

l a t e ra l   concen t r a t ion   g rad ien t ,   c an  be depleted  and  inverted.   Nonetheless,  

s ince   tunnel ing   can   usua l ly   occur   th rough  par t   o f   the  small inve r t ed  region, 

the  degradation  of IB hence  can still be v e r y   s i g n i f i c a n t   f o r  a PNP 

t r a n s i s t o r  as we will s e e   l a t e r   d u r i n g   t h e   p r e s e n t a t i o n  of our  experimental  

r e su l t s .  

A3.. . Empir ical   Equat ions  for  I 

2 

i 
B 

Previously  in   Equat ionA(3) ,  we ind ica t ed   t he   va r i ab le s   con tml l ing  Ii B 
by tak ing   in to   account   the   phys ica l  mechanisms causing  the  current .  Next 

we wr i te  down  some empir ica l   equa t ions   for  Ii which s a y   v e r y   l i t t l e   a b o u t  

t he   phys i ca l   o r ig in  of the  current  but  emphasizes its approximate  voltage 

and  temperature  dependence. 

B' 
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IB = 5 I$ 
1 

and 

where Io is a n   e m p i r i c a l   c o n s t a n t  for the  i component of   the   base   cur ren t ,  

ni(V,T) is the "ident i fying" component number f o r   t h e  i component. I n  

general ,  i t  may be a func t ion  of in jec t ion   leve l   and   of   t empera ture .  The 

value o r  the  range  of  values of n for t h e   d i f f e r e n t  base c u r r e n t  components 

are a s  follows: 

i P 

Lb 

n = 1: 

l<n<2 : 

2<n<4 : 

Bulk recombinat ion  current  i n  the emitter and  base  region. 

Or, sur face   recombina t ion   cur ren t   on   the   emi t te r   and   base  

region. 

Bulk r e c o m b i n a t i o n   c u r r e n t   i n   t h e   j u n c t i o n   t r a n s i t i o n  re- 

gion. Or, su r face   r ecombina t ion   cu r ren t   ove r   t he   t r ans i t i on  

region. I t  is s i g n i f i c a n t   t o   n o t e   t h a t   i n   t h i s   i m p o r t a n t  

case   the  meaning of a given n value is u n f o r t m t e l y  

ambiguous,  unless  complemented by  some o t h e r  measurements. 

Recombina t ion   cur ren t   in   the   channel   ( invers ion)   reg ions ,  

i f   p r e s e n t ,   a n d   t h e   a d j a c e n t   b u l k  material. 

I n  a given V and T range i t  is usua l ly   t rue   t ha t  one of  the  base  cur- 

r e n t  components is dominant.  Then by determining  the n value we m y  be ab le  

t o   i d e n t i f y   t h e  component i n   ques t ion .  The i d e n t i f i c a t i o n   o f   t h e   s p a t i a l  

o r ig in   o f   t he   cu r ren t  is usua l ly   impor t an t   i n  complementing  and  supplementing 

the  conclusions of some o t h e r  measurements. Two di f fe ren t   t echniques  were 

used  to  obtain  l lnrr:  

i )  VBE a n a l y s i s :  n can be determined  from  the  slopes  of  the log I 
B 

vs. VBE p l o t s  as seen  from EquationA(7)  and is wel l   d i scussed   in   the  l i t e ra -  

ture .  We emphasize  again  that  a changing n value a t  d i f f e r e n t  V p o i n t s  may 

still rep resen t  one  dominant I component.  The v a r i a t i o n   i n  n i n   s u c h  a case 

may s imply   r e f l ec t  its i n j e c t i o n   l e v e l  dependence. 

BE 

B 

i i )  1/% vs. I p l o t s :  n can   a l so  be  determined from the   s lopes   o f   the  C 
l o g  1/% VS. l o g  I p l o t s  a t  a given  f luence  since C 



- 1 % - I B  Z constant  I 

%E I C  

n 
C 

Th i s  is v a l i d  i f  the   base   cu r ren t   cons i s t s   o f  one  dominant  component, i.e. 

IB = IN exp  (qV/nlrr>.  Then s i n c e  I = Ico exp (qV/KT) we can write I = 

constant  I1jn and  consequent ly   ob ta in   Equat ion~(8) .  
C B 

C 

If one is i n t e r e s t e d   i n   i d e n t i f y i n g   o n l y   t h e   a d d i t i o n a l  base c u r r e n t  

component(s)  introduced by the   i r r ad ia t ion   t hen   t he  log ( A l / h  ) vs.   log 

I p l o t s  have t o  be used   ins tead .   In   p rac t ice   there  was very l i t t l e  d i f -  

ference  between this and  the log l / h  vs .   log  I p l o t  when IB inc reased  by 

a f a c t o r  of 20 or more. 

m 
C 

C 

Although  method i )  is more p r e c i s e   i n   o b t a i n i n g  n i t  is a l s o   f a r  more 

tedious  and time consuming than ii). I n   c o n t r a s t   t h e   d a t a   n e c e s s a r y   f o r  

method i i )  are r e l a t ive ly   ea s i ly   ob ta ined   on  a h igh   speed   au tomat ic   t rans is tor  

gain t es te r  l i k e   t h e   F a i r c h i l d   S e r i e s  500. Nevertheless,  method i )   a l s o   f u r -  

n i s h e s   a c t u a l  I 

knowledge  of t he  IB values  is just as important as t h e  knowledge of the  Itntt 

values. 

B vs* 'BE da ta   wh i l e   i i )   does   no t .   I n   ce r t a in   ana lyses   t he  
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APPENDIX I1 

"BIAS  DEPENDENCE AND ORIGIN OF THE IONIZATION INDUCED SURFACE 
DEGRADATION OF NPN PLANAR TRANSISTORS" 

I n   s p i t e  of   the  many e x c e l l e n t   t e c h n i c a l   p a p e r s   i n   t h e  area o f   i r r a d i a t i o n  

induced   su r f ace   e f f ec t s ,  some uncer ta in ty  s t i l l  exists i n   t h e   l i t e r a t u r e  as t o  

the   cause ,   o r   even   to   the   ex is tence   o f   the   b ias   dependence   of   the   sur face  

degradation  of NPN p l a n a r   t r a n s i s t o r s .  (We def ine   b ias   dependence   to  mean 

t h a t   t h e  amount of   surface  degradat ion is dependent  on  whether  the  transistor 

is  reverse b iased  (C-B junction  vo1tage)during  exposure . 
A s  an example , the  Bendix  group  (Ref' 'I-') observed  the  bias  dependence 

of   the  surface  degradat ion  of  NPN b i p o l a r   t r a n s i s t o r s   b u t   t h e i r   f i n d i n g  w a s  

a t   v a r i a n c e   w i t h   t h a t  of Schmid (Ref.  11-2) who claimed  no  such  dependence. 

Hughes (Ref '   also  reported  no  bias  dependence,  whereas a recent   paper  by 

Poch and  Holmes-Siedle  (Ref' calls the  bias  dependence  "typical".  The 

sur face   degrada t ion   in   papers  11-1, 11-2,  and  11-3 was exp la ined   i n  terms of 

the  charge  accumulation on t he   S i02   o r  & the   Si02  or   both.   Supplementing  this  

model,  the  papers  by Snow, e t  a1 (Ref'  and  by  Maier  (Ref'  pointed  out 

t h a t   t h e   e f f e c t   o f   t h e  new i n t e r f a c e  s ta tes  could  be  dominant  over  that  of  the 

charge   accumula t ion   in   caus ing   sur face   degrada t ion   of   p lanar   t rans is tors .  

However, no  study was ca r r i ed   ou t  on the  problem  of  bias  dependence, i f  any. 

Pa r t i a l ly   because  of the   cont rad ic tory   c la ims   as   to   the   ex is tence   o f   b ias  

dependence  which is an  extremely  important  problem  for  prediction  purposes,   but 

mainly  because of t he  newly  recognized  role   of   the   interface s ta tes ,  experi-  

ments were car r ied   ou t   to   s tudy   the   b ias   dependence   of   sur face   degrada t ion .  

The expe r imen ta l   r e su l t s  were examined i n  terms of a l l  the  ideas   used a t  present  

t o   e x p l a i n   t h e   i r r a d i a t i o n   i n d u c e d   s u r f a c e   e f f e c t s .   T h e s e   i d e a s   i n c l u d e   i )   t h e  
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ef fec t   o f   the   charge   accumula t ion  over the   oxide  surface  with  subsequent   migra-  

t i o n   i n t o   t h e   o x i d e   i i )   t h e  effect  of   the  charge  migrat ion  and 

accumula t ion   w i th in   t he   S i0   due   t o   t he   pos i t i ve   cha rges   gene ra t ed   t he re ,   i i i )  

t h e  effect  o f   t he   c r ea t ion  of t h e  new i n t e r f a c e  states which may o r  may no t   be  

r e l a t e d   t o   t h e   p o s i t i v e   c h a r g e s   w i t h i n   t h e   o x i d e .  

2 

Type 2N1613 t r a n s i s t o r s  from F a i r c h i l d  were used i n   t h i s   s t u d y .  The 

following  parameters were measured as a function  of  exposure: I a t  VBE = 

0.26V,  0.38V, 0.50V, IEBO at 2V reverse b i a s  and C a t  ze ro   b i a s   t o   mon i to r  

t he   su r f ace   cond i t ions  a t  t h e  E-B j u n c t i o n ;  a t  V = 0.26V forward  bias 

( i . e . ,   t h e   b a s e   c u r r e n t   i n   i n v e r t e d   t r a n s i s t o r   c o n f i g u r a t i o n ) ,  ICBO a t  1 O V  

r eve r se   b i a s  and CBc a t  zero   b ias   to   moni tor   sur face   condi t ions  a t  t h e  C-B 

junc t ion .  The measurements  of I and I?) a t  low VBE r e s u l t e d   i n  a high 

sens i t i v i ty   i n   mon i to r ing   t he   su r f ace   cond i t ions   wh ich  i s  o r d i n a r i l y   n o t  

possible  with  gain  measurements.  

B 

BE 
I i n v  

CB 

B 

Separate  Co6O-X rays  and 1 MeV e l e c t r o n s  were used t o  produce  ionizat ion.  

The evacua t ion   o f   t he   t r ans i s to r s  was accomplished  by  puncturing  holes on t h e  

cans  consequently  the  devices were under vacuum only  during  e lectron  exposure.  

The d i f fe ren t   b iases   appl ied   dur ing   exposure  were turned  off  when t h e   i r r a d i a -  

t i o n  was stopped. Then the   devices  were t r a n s f e r r e d   i n t o  a 35°C temperature 

chamber f o r  a l l  measurements  but  the CBE, CBc. Many of the   devices  were used 

over  and  over  again  in  subsequent  exposure  runs by annea l ing   the   sur face  damage 

a f t e r  each  exposure. 

A s  a r e s u l t  o f   these   inves t iga t ions  we repeatedly  observed a ve ry   l a rge  

bias   dependence  of   the  surface damage on normal   (gas   f i l l ed)  NPN t r a n s i s t o r s .  

Namely, devices  with a reverse   b iased  C-B junc t ion  (1OV) o r   i n   t h e   u s u a l   a c t i v e  

s ta te  ( reverse   b iased  CB,  forward  biased EB) showed almost  an  order  of  magnitude 

h igher   rad ia t ion   sens i t iv i ty   than   the   pass ive   ones   dur ing   exposure .   Note   tha t  
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t h e   f i n a l  amount of damage fo r   doses  above=1O6 r a d s ( S i )  w a s  approximately  the 

same f o r  a l l  the   devices .  I.e.,  t h e   s u b s t a n t i a l   d i f f e r e n c e s   i n   r a d i a t i o n  

s e n s i t i v i t y  w e r e  ev ident   on ly  a t  the  lower  doses  during  measurements as a funct ion 

of   dose .   ( Inc identa l ly ,   par t   o f   the   h igh   sur face  damage t ends   t o   decay   w i th  

time a f t e r   t h e   i r r a d i a t i o n  i s  stopped and t h e   b i a s  is  tu rned   o f f .  But a f t e r   t h e  

p a r t i a l   r e c o v e r y  is completed  the  surface damage is  s t i l l  f a r  more t h a n   t h a t  on 

t h e   p a s s i v e   t r a n s i s t o r s . )  

In   sha rp   con t r a s t   t o   t he   behav io r  of the  normal  devices,   no  bias  dependence 

of t h e   s u r f a c e  damage w a s  found  on  evacuated NPN t r ans i s to r s   unde r   o the rwise  

ident ica l   exposure   condi t ions .   (Never the less ,   the   sur face   degrada t ion  was s t i l l  

s u b s t a n t i a l ;   t h e  same as those  of   the  passive  devices   normal   or   evacuated) .  I t  

appears   then  that   the   s t rong  bias   dependence  of   the  surface  degradat ion was en- 
t i r e l y  due to   t he   i on iza t ion   o f   t he   gas   w i th in   t he   can  and t o   t h e   f r i n g i n g  

e l e c t r i c   f i e l d  between  the  header  and  the  base.   Although  this i s  a f a m i l i a r  

explanation,  proposed  almost 6 years  ago, i t  i s  q u i t e  a s u r p r i s i n g   r e s u l t   i n  

view of the  current   models   of   radiat ion damage on   ox id ized   S i   sur faces .  It 

means t h a t  somehow w e  have to   expla in   the   observed  bias ( i . e . ,  e l e c t r i c   f i e l d )  

independence  of   the  surface  degradat ion  in   the  evacuated  devices   in  terms of 

one o r   bo th   o f   t he  two degrading   fac tors :   the   pos i t ive   charge   genera t ion  

wi th in   the   S i02   and   the  new i n t e r f a c e  s ta tes .  Keeping i n  mind t h a t   t h e   b a s e  

s u r f a c e   i n   t h e   v i c i n i t y   o f   t h e  EB junct ion  would  be  subjected  to  a weak 

f r i n g i n g   f i e l d  due t o   t h e  reverse b iased  CB junc t ion  w e  b e l i e v e   t h a t   t h e  

impl ica t ions  are the  fol lowing:  

i) The charge  accumulation was s u f f i c i e n t   t o   c a u s e   s u r f a c e  damage 

e i t h e r  by   modi fy ing   the   sur face   po ten t ia l   o r  by t h e  effect  of   the  charge 

r e l a t e d   i n t e r f a c e  s ta tes  o r  both.  
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This charge  accumulation,  however, was not a f f e c t e d   b y   t h e   f r i n g i n g  

electric f i e l d  due t o   t h e   b i a s e s   ( e   . g . ,   t h e   d i f f u s i o n  w a s  t he  dominant f ac to r . )  

ii) The charge  accumulation,  al though  affected  by  the  fringing e lec t r ic  

f i e l d ,  was i n s i g n i f i c a n t   t o   c a u s e  damage through  the  modif icat ion  of   the  surface 

po ten t i a l .  Then apparent ly   the  pr imary  cause  of   surface  degradat ion was the  

creat ion  of   the new i n t e r f a c e  states which were independent  of  the  charge 

accumulation  in  the  Si02.  This l a s t  conclusion would be  a t  var iance   wi th   the  

proposal  by  Goetzberger, e t  a1 (Ref* ‘I-’) t h a t   t h e  new i n t e r f a c e  states around 

the  middle  of  the  bandgap are due t o  double   charges   o r   charge   c lus te rs   in   the  

sio2. 

S i g n i f i c a n t l y ,   t h e   a r g u m e n t s   p r e s e n t e d   i n   i )  and i f )  above  also  follow 

from the   s tud ies   o f  Ip’J and ICBO. Since   the   base   contac t   over laps   the  CB 

j u n c t i o n   i n   t h e   F a i r c h i l d  2N1613 t ransis tors ,   no  charge  accumulat ion on the  

surface  did  take  place.   Nevertheless ,  a subs t an t i a l   deg rada t ion   o f   bo th  I? 

and I was usually  observed  for  both  normal and evacuated  devices.  However, 

th i s   degrada t ion  was always  independent  of reverse b i a s  (lOV) across   the  CB 

junct ion.   This   resul t   can  be  understood  only by argument similar t o   i )  and i i ) .  

CBO 

Since i t  is  d i f f i c u l t   t o  see how the  charge  accumulation as p r e s e n t e d   i n  

i )  , could  not   be  inf luenced  by  the  high  f r inging  f ie lds   (as   caused  by a 10- 

vo l t   r eve r se   b i a s   ac ross   t he  CB junc t ion)  and s ince   t he   impor t an t   ro l e   o f   t he  

new i n t e r f a c e  states in   su r f ace   deg rada t ion  is  w e l l  e s t ab l i shed ,  we be l i eve  

tha t   p roposa l  ii) has   h ighe r   c r ed ib i l i t y   t han  i). 

Figures  (11-1) through (11-4) show some typ ica l   cu rves .  To reduce con- 

fus ion  on these   p re l iminary   f igures ,   on ly   the   da ta   o f   one   t rans is tor  is  shown 

to   r ep resen t  a given test condi t ion.  The feas ib i l i ty   o f   us ing   evacuated   t ran-  

s i s t o r s   i n  a radiation  environment  to make them more r ad ia t ion   r e s i s t an t   shou ld  

be  explored  and  re-examined. 
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